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ABSTRACT 
  

A fundamental problem for individuals with 
amputations proximal to the elbow is the lack of methods 
for controlling an upper limb prosthetic. Myoelectric control 
is limited in flexibility when few residual muscle sites are 
available, and noninvasive approaches to this problem are 
needed when surgical techniques such as targeted muscle 
reinnervation are not suitable. Controlling an upper limb 
prosthetic with the leg is one such approach. In this case 
study, we investigate recognition of foot gestures via surface 
electromyography using methods commonly employed in 
upper limb gesture recognition research. For comparison 
with the current standard in gesture recognition, 
electromyographic sensors recorded muscle activity from 
the forearm while participants performed gestures with the 
dominant hand. Then, participants performed an analogous 
set of foot gestures with sensors on the lower leg. 
Participants found the mapping between the hand and foot 
to be intuitive, and offline results show that classification 
accuracy for the two cases is comparable, motivating further 
work in applying this idea to upper limb prosthetic control. 
 

INTRODUCTION 
 

For individuals with transradial or more distal 
amputations, it is often possible to place electromyographic 
(EMG) sensors on residual muscle sites of the forearm for 
intuitive control of prosthetic wrist and hand functions 
(Scheme & Englehart, 2011; Roche et al., 2014) . When the 
amputation is proximal to the elbow, however, the situation 
is more difficult because of the lack of available muscle 
sites for control output. Targeted muscle reinnervation 
(TMR) is the only approach currently offering a truly 
intuitive control interface for high-level upper limb 
amputees, whereby nerves from the amputation site are 
surgically relocated to other muscles of the body, such as 
those in the chest. EMG sensors can then be used to 
measure muscle activations of the reinnervated muscles 
which, to the user, feel like movements of the missing limb. 
These “gestures” can then be classified for control of 
prosthetic arm functions (Kuiken et al., 2009). 

In this work, we propose a noninvasive alternative to 
the surgical approach, where the amputee would control an 
upper limb prosthetic with analogous movements of the 
lower leg. The idea of controlling a powered upper limb 
prosthetic in this way is not new and has recently been 

successfully implemented with inertial measurement unit 
(IMU) sensors on both feet (Resnik et al., 2014b) for 
controlling the DEKA prosthetic arm and hand (Resnik et 
al., 2014a). Both feet are needed to control one prosthetic 
because the number of functions exceeds the number of 
control signals provided by one IMU alone; furthermore, all 
functions are not meant to be intuitive. In our work, we are 
aiming to keep all upper limb prosthetic control bound to 
one leg and for all leg movements to be analogous to arm 
movements in order to minimize cognitive load and training 
time required to operate the system. To our knowledge, this 
is the first application of EMG-based gesture recognition 
techniques to the leg for this purpose and the first use of 
surface EMG for recording extrinsic toe flexors and 
extensors. 

In this case study, subjects performed hand gestures 
with EMG sensors placed on the forearm. Then, sensors 
were placed on the leg and subjects performed an analogous 
set of foot gestures while seated. All recordings were taken 
in a single session for each subject, and the data was 
analyzed offline. This is only the first step toward control of 
an upper limb prosthetic via EMG-based recognition of leg 
gestures, however the results are promising and motivate 
future work wherein subjects would control a simulated or 
actual prosthetic. 
 

BACKGROUND 
 

As a preliminary task for the experiment, a mapping 
between the wrist/hand and ankle/foot was developed. The 
first part of this is a gesture mapping, which is intended to 
be intuitive assuming a body posture similar to that used 
while typing on a keyboard. The gestures chosen are shown 
in Figure 1, with analogous pairs indicated by arrows. The 
upper limb gestures selected represent most of the desirable 
functionality of a prosthetic wrist and hand, with the thumb 
extension (TE) gesture acting as a placeholder for any 
additional hand function such as key grip or fine pinch. The 
analogous foot gestures were chosen based on the alignment 
of the degrees of freedom of the wrist and ankle when the 
hand is placed in front of the body with palm face down and 
the foot is oriented in the standard anatomical position 

In order to further strengthen the analogy between the 
leg and the arm, we also identified a set of muscles which 
have analogous primary actions on the corresponding limb. 
They are listed in Table 1 and are the muscles targeted by 
the EMG sensors in our experiment. While it is common in 



 

EMG-based gesture recognition research to place a ring of 
sensors circumferentially around the forearm due to 
amputation (Scheme & Englehart, 2011), the leg is in 
general not limited by this constraint, so we are able to 
record directly at applicable muscle sites. 
 

METHODS 
 

Subjects 
The three subjects that participated in this study (two 

male, one female) were all undergraduate students at UC 
Davis between the ages 20–21 and were right-hand 
dominant. Subjects were informed of and consented to 
procedures approved by the Institutional Review Board at 
UC Davis (protocol #251192). 
 
Experimental Protocol 

The experiment consisted of a single session lasting 
approximately two hours. In the first part of the session, 
EMG sensors were placed on the dominant forearm and 
wrist while subjects performed the seven gestures shown in 
the top of Figure 1. Each recording trial consisted of the 
following sequence: two seconds of rest while viewing the 
prompted gesture, onset of the gesture, three seconds 
holding the position, then resting for four seconds before the 
start of the next trial. All gestures were performed three 
times per cycle in randomized order. Four cycles were run 
on the arm with approximately one minute of rest in 
between.  

In the second part of the session, the sensors were 
removed from the arm and placed on the ipsilateral leg 
(Table 1). Subjects were shown the images of the hand 
gestures in Figure 1 and were asked to perform analogous 
foot movements. Before beginning the recording trials, any 
discrepancies between the subject’s interpretation of the 
analogous gestures and the gestures in the lower part of 

Figure 1 were verbally corrected (usually little correction 
needed if any) and it was ensured that subjects understood 
the mapping before proceeding. This process typically 
lasted about two minutes and the recording cycles for the 
foot gestures began immediately after. The same trial/cycle 
protocol applied to the foot gesture portion of the session. 

 
Electrode Placement 

Twelve disposable Ag/AgCl center snap electrodes 
(ConMed 1620) were placed in bipolar pairs on the muscles 
listed in Table 1 with approximately 2.5 cm inter-electrode 
distance. An additional electrode was placed on the 
olecranon in the arm recording setup and the medial 
malleolus in the leg setup, serving as a ground connection. 
The muscles with sensor location recommendations by 
SENIAM (Hermens et al., 1999) (i.e. gastrocnemius 
lateralis, tibialis anterior, peroneus longus) were positioned 
as recommended. For the other muscles, palpation was used 
to locate the muscle belly and a movable “EMG probe” with 
dry electrodes was used to identify a suitable recording site 
by asking the subject to perform various movements while 
monitoring the probe signal. For most of the muscles, this 
procedure was straightforward, however the extrinsic toe 
flexors/extensors were not as simple to isolate as they lie 
beneath other muscles. A compromise was found by 
incrementally moving the probe distally while the subject 
performed discriminatory movements (e.g. toe extension 
and dorsiflexion), trading off between crosstalk from the 
larger muscles associated with ankle movements and small 
signal amplitude from toe movements. After marking each 
recording site, the electrodes were placed and all signals 
were checked for quality before proceeding with the 
recording trials. 
 
Data Collection and Analysis 

 
 
Figure 1: The gesture mapping created for this study. Subjects viewed the images of the hand gestures in both the arm and 
leg recording configurations. Images of the leg are for illustrative purposes only. 



 

A custom graphical user interface program was created 
for prompting subjects to perform the gestures and 
collecting the raw EMG waveform data. At the start of each 
recording trial, an image of a hand gesture from Figure 1 
was shown, and a progress bar prompted the participant for 
gesture onset and offset. Six EMG channels were amplified 
by Motion Labs Systems Y03 differential EMG amplifiers 
(×300 gain, 100 dB CMRR, − 3 dB bandwidth from 15 Hz 
to 2 kHz), sampled at 8 kHz by a Measurement Computing 
USB-1608G data acquisition system (16-bit), and recorded 
directly to disk by the user interface program. Subsequent 
analysis was performed offline. 

Signal conditioning included filtering with a fourth-
order digital Butterworth bandpass filter with a 10–450 Hz 
passband then downsampling by a factor of 4 to 2 kHz. The 
filtered and downsampled signals were segmented into 150 
ms windows with 50 ms overlap. The windows from 1–1.5 
seconds (just before gesture onset) of each recording were 
used as instances of the rest class, and windows between 2–
4 seconds (just after gesture onset and before gesture offset) 
were used as instances of the class corresponding to the 
gesture image prompt shown to the subject during that trial. 
Four time-domain features, introduced by Hudgins et al. 
(Hudgins et al., 1993), were extracted from each channel of 
the recording to form a 24-dimensional feature vector: mean 
absolute value (MAV), waveform length (WL), number of 
slope sign changes (SSC), and number of zero crossings 
(ZC). The linear discriminant analysis (LDA) classifier was 
chosen due to its simplicity, computational efficiency, and 
status as a standard with respect to which other 
classification methods were tested (Lorrain et al., 2011). For 
both the arm and leg configurations, classification accuracy 
was determined by a cross validation scheme in which two 
cycles were used for training the classifier and the 
remaining two were left for testing. Every possible 
combination was tested in this way and the total number of 
correct classifications for all combinations divided by the 
total number of testing instances produced the average 
classification accuracy.  
 

RESULTS 
 

The average classification accuracy for each subject in 
the two experimental configurations is shown in Figure 2. 
Although the accuracy in the leg configuration is 
systematically lower than that of the arm configuration, all 
subjects achieved foot gesture classification accuracy at or 
above 90%. 

Figure 3 is complementary to the average accuracy for 
each subject, showing the average accuracy for each foot 
gesture. The rows of the matrix represent the actual gesture 
class and the columns represent the predicted class. 
Elements in the matrix are the percentages of testing 
instances with the label of the corresponding row which 
were classified as the corresponding column. Hence, 
diagonal elements are correct classification rates and off-
diagonals are misclassification rates. All but two gestures 
had classification accuracy above 90%. Note that toe 
extension (TE) was misclassified as dorsiflexion (DF) 9% of 
the time, indicating that recordings of the toe extensors were 
contaminated by crosstalk from the much larger tibialis 
anterior. Also, the hallux extension gesture was notably the 
most difficult for participants to perform repeatably, which 
is reflected by its misclassification as several other gestures 
3% of the time each.  The hallux extension (HE) and lesser 
toe extension (TE) gestures were surprisingly 
distinguishable, despite the close proximity of the sensors 
measuring the activity of the muscles responsible for these 
movements (extensor hallucis longus and extensor 
digitorum longus). 
 

DISCUSSION 
 

The results presented here demonstrate the feasibility of 
recognizing gestures of the lower leg and foot via surface 
electromyography. Participants found the mapping between 
the hand and foot intuitive and achieved classification 
accuracies that could be sufficient for prosthetic control; 
however further work is needed to test the usability of such 
a system explicitly. The next step is to develop an online 
system wherein the user views a prosthetic arm and receives 
visual feedback as to the accuracy of their movements. It 
has been reported that there is considerable variation in 
online task performance when offline classification 
accuracy is at or above 90% (Ortiz-Catalan et al., 2013), 

Table 1: Muscles used in the gesture recognition system. 
 

Arm Leg 
Muscle Primary Action Muscle Primary Action 
extensor carpi radialis longus wrist extension tibialis anterior dorsiflexion 
pronator teres forearm pronation peroneus longus foot eversion 
flexor carpi radialis wrist flexion gastrocnemius lateralis plantarflexion 
extensor pollicis longus thumb extension extensor hallucis longus hallux extension 
extensor digitorum finger extension extensor digitorum longus lesser toe extension 
flexor digitorum superficialis finger flexion flexor digitorum longus lesser toe flexion 

 



 

indicating that the small difference between hand and foot 
gesture classification accuracy reported here could be 
overcome by providing feedback to the subject. 
Furthermore, the foot and toe movements described in this 
paper are not performed as frequently as their hand and 
finger counterparts in daily life. Hence, with additional 
training and online feedback while performing the gestures, 
a user might be able to execute a task in the leg 
configuration just as well as with the arm setup. 

While there are practical issues involved in using a foot 
gesture system as a basis for upper limb prosthetic control, 

Resnik et al. address many of these concerns and show that 
amputees are generally willing to use movements of the foot 
for control of a prosthetic arm and hand (Resnik et al., 
2014b). One advantage of EMG over inertial measurement 
sensing is the possibility of using isometric contractions of 
the leg muscles to control the prosthetic. In addition, control 
outputs unique to EMG could be combined with IMU-based 
techniques to achieve increased capabilities for overall 
control. 
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Figure 2: Average classification accuracy across gestures 
for each participant. 
 

 
 
Figure 3: Confusion matrix averaged across participants in 
the leg configuration.  Correct classification rates are given 
with standard deviation indicated. Abbreviations are the 
same as in Figure 1. NC stands for “no contraction” (rest). 
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