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 INTRODUCTION 

The assessment of everyday functioning has 

become a topic of interest in aging research. 

Studies have investigated the importance of 

assessing and understanding decline in older 

adults’ ability to carry out tasks of daily living 

and its relation to cognitive functioning1,2,3. 

Some studies have suggested that assessment 

of everyday functioning may be one of the most 

ecologically valid ways to measure cognitive 

decline as it applies to independent functioning 

in the home2. However, “real world” scenarios 

for assessment of everyday functioning are not 

commonly used by neuropsychologists, and 

instead clinicians rely on paper and pencil-

based tests, questionnaires, and self-report 

information to determine impairment in tasks of 

daily living.  

 

Recent studies have investigated the utility 

of “smart environments” to assist older adults 

who are experiencing difficulty with activities of 

daily living (IADL), such as cooking and 

cleaning4,5. However, smart homes may be able 

to function as an assessment tool for evaluating 

difficulties with IADLs, or for determining the 

need of assistive technology in the home to 

permit independent living. We evaluated the 

ability of three types of assessment methods to 

measure everyday functioning in older adults. 

 METHOD 

Participants were 28 older adults, further 

separated into two groups: 1) cognitively 

healthy (n=14; mean age = 72.29 years; mean 

education = 15.82 years) and 2) mild cognitive 

impairment (MCI; n=14; mean age = 73.00 

years; mean education = 15.57 years) based 

on a battery of standard neuropsychological 

tests of memory, attention, speeded 

processing, and executive abilities, as well as 

numerous self-report questionnaires, and 

medical information (criteria for MCI were 

consistent with Petersen and colleagues6). The 

two groups were matched on age (within 2 

years) and education (within 3 years). 

 

Measures of Everyday Functioning 

Direct Observation Measure: Participants 

carried out eight instrumental activities of daily 

living (IADL) in a smart home testbed on the 

Washington State University campus. The eight 

activities included: (1) sweeping the kitchen 

floor and dusting the dining and living rooms, 

(2) filling a 7-day medication dispenser with 

three types of medications, (3) filling out a 

birthday card along with an appropriate 

monetary check, and addressing the envelope, 

(4) operating a DVD player and watching a 5-

minute news clip on the television, (5) watering 

three plants, (6) conversing on the telephone 

about the 5-minute news clip watched 

previously, (7) cooking a microwaveable meal 

of noodle soup, and (8) selecting an outfit 

appropriate for a job interview. 

 

Direct observation data was collected by 

two experimenters observing the participant 

who was carrying out the eight activities. The 

experimenters coded the participant’s actions 

based on the accuracy of completion, as well as 

sequence of steps completed. Two additional 

researchers coded six types of errors (based on 

the previously explained data collection): 1) 

critical omission, 2) critical substitution, 3) non-

critical omission, 4) non-critical substitution, 5) 

inefficient action, and 6) irrelevant action. Table 

1 provides detailed code assignment 

information for each error and Table 2 shows 

the scoring rubric used to derive an overall 

score for each activity. The overall score for 



each of the 8 activities was summed to derive 

the direct observation score. 

 

Laboratory Measure: Participants completed 

the Everyday Problems Test7 (EPT), a paper 

and pencil-based measure of everyday abilities. 

The EPT requires participants to solve simulated 

“real world” tasks that involve various ADL 

domains (e.g., shopping, transportation, meal 

preparation). 

 

     Sensor Data Mining Method: The WSU smart 

home testbed (CASAS) is a two-story 

apartment with a living room, dining room, and 

kitchen on the first floor, and three bedrooms 

and one bathroom on the second floor. It 

contains different types of sensors, including 51 

motion sensors on the ceiling, door sensors on 

the refrigerator, microwave door, and on the 

cabinets, and item sensors on various items 

such as a medication dispenser. In addition, the 

apartment contains power sensors and 

temperature sensors to monitor power usage 

and the temperature of the rooms. See Figure 1 

for the sensor layout and of the apartment. 

 

When a participant performs the eight IADL 

tasks, the various sensors are triggered. These 

sensor events are then recorded into a 

database and do not contain activity specific 

information. Thus, they are manually annotated 

later so as to relate sensor events with a 

specific activity that has been performed at that 

time. 

 

     From the annotated data we extracted 

various features that represent how well the 

participant performed the activity. These 

features include measures of time elapsed 

(duration) to complete the activity, and the 

number of sensor events triggered. See Table 3 

for the complete list of extracted features. 

 

    We used Neural Networks, a widely used 

machine learning model, to analyze how well 

the activity was performed by the participant. 

Neural networks are mathematical models 

inspired by the functional aspects of biological 

neural networks8. In this experiment, a 

multilayer perceptron (MLP) was used. A MLP 

contains an input layer, one or more hidden 

layers, and an output layer. Each layer is made 

up of one or more artificial neural nodes. 

 

We used nine dedicated neural networks to 

analyze the eight activities – eight neural 

networks analyze each activity separately, 

while the ninth neural network analyzes the 

combined features of all activities. The neural 

networks were trained with a training set 

containing activity information of 11 dementia, 

3 MCI, and 35 normal participants. A standard 

back propagation algorithm was used to train 

the network. After training, the trained neural 

network was applied to the data from the 28 

participants in this study.   

 

     Using nine different neural networks, nine 

different scores were obtained, one for each 

activity as well as the combined features of all 

activities. These scores were then averaged to 

determine a combined functional score for the 

participant. This method of averaging is 

commonly known as voting-average8,9 and is 

one most common ways to combine multiple 

machine learning models.    

 RESULTS 

Pearson correlations were used to analyze 

the relationships between the data obtained 

through direct observation, laboratory testing 

and the motion sensors in the smart home 

testbed. To determine significance, p-values 

were set at .05. Controlling for age, the 

functional score calculated from the motion 

sensor data correlated significantly with the 

direct observation score (r = -.605, p = .005) 

and the EPT (r = .583, p = .007). The EPT also 

strongly correlated with the direct observation 

score (r = -.624, p = .003). 

 DISCUSSION 

The significant correlation between the 

functional score derived from the sensor data 

and the direct observation score suggests that 

there is a positive relationship between these 

two measures. Thus, a better score derived 

from direct observation of the participant 

performing the activity correlates strongly with 

a higher functional score derived from the 

sensor data. This suggests that the data 

obtained from the motion sensors is in strong 

agreement with the data obtained through 

direct observation. 



 

The strong correlations between the 

functional score derived from the sensor data, 

direct observation measure, and EPT further 

suggests that while these assessment methods 

are different in nature, they are all providing 

information about everyday functioning. Future 

research will be needed to determine whether 

information derived from sensor data collected 

within a smart home can provide accurate and 

ongoing information regarding an individual’s 

everyday functional status. Such information 

would allow for the functional status of 

individuals to be assessed on a daily basis 

within their home environment and earlier 

interventions to be initiated. 

 FIGURE AND TABLES 

Figure 1: Smart Home with Motion (M), Item 

(I) and Door (D) Sensors 

 

 

Table 1: Direct Observation Coding Schema 

Error Type Description 

Critical Errors 1. Critical Omission: Coded when a step 
or subtask that is necessary for accurate 
completion of the activity is not 
completed (e.g., failure to retrieve 
broom, failure to put check into 
envelope). 
2. Critical Substitution: Coded when an 
alternate object, or a correct object but 
an incorrect gesture, is used and 
disrupts accurate completion of the 
activity (e.g., dusting the kitchen 
instead of the living room, filling 
medication dispenser incorrectly) 

Non-Critical 
Errors 

1. Non-Critical Omission: Coded when a 
step or subtask is not performed but the 
activity is still completed accurately 
(e.g., failure to return items to their 
original locations, does not turn off the 
television). 

2. Non-Critical Substitution: Coded when 
an alternate object, or a correct object 
but an incorrect gesture, is used but the 
activity is still completed accurately 
(e.g., uses buttons on television rather 
than remote to operate electronics, uses 
container other than watering can to 
water plants). 

Extraneous 
Errors 

1. Irrelevant Action: Coded when an 
action that is unrelated to the activity, 
and completely unnecessary for activity 
completion, is performed (e.g., sweeping 
the front entryway in addition to the 
kitchen, washes dishes after completing 
the cooking task). 
2. Inefficient Action: Coded when an 
action that slows down, or compromises 
the efficiency of task completion, is 
performed (e.g., making multiple trips to 
the dining room table, opening and 
closing extraneous cupboards and 
drawers unnecessary for task 
completion). 

 

Table 2: Direct Observation Score for Each 

Activity 

Score Description 

1 Task completed without any errors 

2 Task completed but with no more than 2 of the 
following errors: non-critical omissions, non-
critical substitutions, irrelevant actions, inefficient 
actions 

3 Task completed but with more than 2 of the 
following errors: non-critical omissions, non-
critical substitutions, irrelevant actions, inefficient 
actions 

4 Task incomplete. Coded when a critical omission 
or substitution occurs and 50% of the task is 
completed. 

5 Task incomplete. Coded when a critical omission 
or substitution occurs and less than 50% of the 
task is completed. 

 

Table 3: Features Extracted from Annotated 

Data 

 
ID Feature Description 

1 Age of Participant (Continuous and 
Categorized : Young Old, Middle Age, Old Old) 

2 Sex 

3 Education 

4 Was instruction given during activity 
completion? 

5 Were all major sensors triggered during 
activity completion? 

6 Time to initiate activity after direction is given 

7 Total number of sensor events generated 



8 Number of unrelated sensors that were 
triggered  

9 Total number of unique sensor that were 
triggered 

9 Total count of unrelated sensor values 

10 Duration (time) taken to complete the activity 

11 Number of item interactions 

12 Number of door interactions 

13 M0-M25(number of times the different motion 
sensors  were triggered) 

14 Activity ID 
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