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APPPLICATION 

The number of elderly people in the world is 
increasing in proportion to the total number of 
people. As people get older, their cognitive and 
perceptual faculties decline in functionality and 
sometimes fail entirely; for example, 
manifesting themselves in disease or illness 
such as blindness or Alzheimer’s disease. 
Approximately 14 million people in North 
America are affected by blindness and 6 million 
people suffer from Alzheimer’s. Technology can 
help alleviate issues of confinement, security 
and safety as well as empowering people who 
feel constrained by their condition. One such 
way is to ensure that they are still able to 
conduct their daily activities by providing them 
with technological navigational tools. A GPS can 
tell people where they are and how to get 
somewhere but the interface can be 
complicated for the elderly.  What if the 
interface was intuitively conveyed by touch like 
a sixth sense? This is what we have done by 
creating a tactile belt that we are now 
commercializing [TAC 11]. However, GPS does 
not work indoors but computer vision can be 
used to localize and create maps and augment 
as well as override GPS so navigational 
capabilities are never compromised (e.g., in 
indoor environments & urban canyons where 
GPS does not work).  

TECHNOLOGY 

 Mobile smart phones provide users with a 
highly portable & connected computing sensor 
device. Their extensive sensor suite, which 
includes a Global Positioning System (GPS), 
cameras, inertial sensors, etc., demonstrates 
the small & portable packaging potential of a 
mobile connected hardware ensemble. A similar 
(with or without phone capability) embedded 
suite can be used not only for augmenting 
navigation for smart phone users but for other 

applications such as assistive devices for people 
with Alzheimer’s and people who are blind as 
well as smart cognitive automobiles and 
augmented reality. One of the under-utilized 
sensors on a smart phone is the camera. 
Computer vision can enhance landmark-based 
navigation by recognizing environments, 
contexts and objects as well as localizing the 
sensor and the environment.  Computer vision 
(i.e., image understanding) involves 
understanding the 3D scene creating the 
image. Computer vision is challenging because 
it is the computer that decides how to act 
based on an understanding of the image. Key 
image understanding tasks include depth 
computation, as well as object detection, 
localization, recognition and tracking. Current 
state of the art techniques are not able to 
perform any of these tasks robustly with the 
precision and accuracy demanded by many 
real-world applications unless environmental 
simplifications are introduced. Additional 
complications include operational and 
environmental factors. For humans, visual 
recognition is fast and accurate, yet robust 
against occlusion, clutter, viewpoint variations, 
and changes in lighting conditions. Moreover, 
learning new categories requires minimal 
supervision and a very small set of exemplars. 
Achieving this level of performance in a 
wearable portable system would enable a great 
number of useful applications including 
assistive devices, cognitive vehicles as well as 
others such as intelligent sensor augmented 
soldiers, real time health care and 
rehabilitation, etc. What we are really 
interested in is a sensor suite that is able to 
discern the state (e.g., location, activity, body 
position) of an agent (i.e., an agent can refer to 
a person or a moving vehicle) as well as the 
state of the agent’s environment (e.g., 
mapping, labeling neighboring static and 
dynamic agents and structures). Another 
component of this system’s architecture is the 



user interface to the agent. Our interests are in 
wearable and tactile interfaces. These haptic 
interfaces can act as a substitute for another 
sensor (i.e., in the case of an assistive device) 
or to draw the attention of the agent towards or 
away from a location or situation.  

STATE OF THE ART 

Global localization of an agent outdoors is 
possible via GPS. In some environments such 
as indoors, forests, urban canyons, sub-sea, 
extra-terrestrial, inside mines, GPS information 
is not readily available. In these environments, 
it is still possible for an agent to localize itself 
by a process in the robotics field known as 
Simultaneous Localization and Mapping (SLAM). 
Via its sensor suite, in SLAM, an agent builds a 
map of the environment while simultaneously 
localizing itself with respect to that map. If a 
map is available a priori, navigation is relatively 
simple. If the global position of the agent is 
known at every time (i.e., using GPS outdoors), 
mapping of the environment is considered a 
solved problem [BUR 99]. The problem 
becomes complicated when the pose of the 
agent and the location of the landmarks are not 
available. This is because the errors in the pose 
of the robot and landmark are correlated. SLAM 
manages error growth by maintaining a 
covariance matrix, which correlates all the 
errors of the state vector including the position 
and bearing of the agent as well as all 
landmarks.  At each time step, the covariance 
matrix is propagated forward in time, indicating 
the interdependence between variables. The 
Kalman Filter (KF), Extended Kalman Filter 
(EKF), or the Particle Filter (PF) are the 
conventional mechanisms by which the state 
and co-variances are propagated between time 
steps. The SLAM process is hard because of (1) 
dimensionality explosion; (2) the need for 
robust landmark detection; and (3) data 
association issues. Since the seminal work in 
SLAM [SMI 86], recent developments have 
strengthened SLAM theory [DUR 06a]. This 
development was aided by only using simple 
feature landmarks, which can be easily 
detected and recognized.  Moving the SLAM 
method into more challenging environments 
necessitates that the landmark issue be 
addressed. The most common sensor used is a 
range-bearing sensor: sonar for indoor and 

underwater and the Laser Range Finder (LRF) 
for outdoor situations. However, LRFs are only 
1D sensors and similar landmarks are 
impossible to differentiate. A camera is a richer 
alternative sensor that provides not only depth 
but also color and texture. Most of the Vision 
SLAM systems implemented to date use 
saliencies or Interest Points (IP) [NEI 08]. 
Some of the challenges for vision SLAM include 
the acquisition of depth and the use of natural 
landmark objects to avoid data explosion. A 
stereo rig can be used but the precision of 
depth values is proportional to its baseline and 
inversely proportional to the square of the 
observed depth, which limits use in outdoor 
environments [JUN 04]. The ultimate goal for 
vision SLAM remains to be operational 
anywhere using the environment’s natural 
features as landmarks with passive vision. As 
with other types of SLAM systems, loop 
closures are also a concern. A related problem 
to SLAM is called visual odometry in robotics, or 
structure-from-motion (SFM) in computer vision 
literature [STU 09]; essentially this is SLAM 
without keeping the built map around.  

For SFM, depth is determined by 
triangulation once eliminating depth and 
constraining the problem space estimate of 
motion. The optimal solution for solving this 
problem is referred to as Bundle Adjustment 
[TRI 99], which is an off-line approach, which 
maximizes the likelihood of the 3D parameters 
given the image projections. Standard on-line 
approaches are (1) filter based which utilize the 
Markovian assumption; (2) odometry 
approaches [KON 07] which capitalize on 
matching many features in the last few frames 
only; and (3) key frame approaches which 
select the set of key frames over the whole 
sequence from which to base the calculations 
about. Filter based approaches utilize EKF, 
Particle Filters or variants such as a Graph of 
Local Filters (GLF) [EAD 07] techniques in a 
recursive predict and update scheme. A Key 
frame approach [KLE 08] optimizes only the 
motion over key frames and not all the frames. 
The best SFM approaches appear to consist of a 
front-end tracker, which can be filter-based, 
and an optimization back end such as the GLF 
or key frame approach.  Filtering improves 
results especially when the overall processing 
budget is constrained. Challenges and issues 



for on-line SFM (as well as off-line) include 
occlusion, dynamic environments as well as 
dense structure estimation.  

The concept of knowing an object also 
embeds information about what we can do with 
those objects. Object perception based on 
appearance unfortunately does not always 
determine function as some objects; for 
example, a chair may take odd forms. Object 
recognition/categorization is hard and has its 
challenges including: (1) viewpoint variation; 
(2) illumination changes; (3) occlusion; (4) 
scale; (5) deformation; (6) background clutter; 
and (7) intra-class variation. From a statistical 
point of view, if we want to detect a car in the 
image, we really want to know P(car|image) vs. 
P(nocar|image). Applying Bayes rule: 

 
where P(car|image)/P(nocar|image) is a 

posterior ratio, P(image|car)/P(image|nocar) is 
the likelihood ratio and P(car)/P(nocar) is the 
prior. Discriminative methods directly model 
the posterior. Generative methods model the 
likelihood and priors. There are three main 
issues with object category recognition: (1) 
representation; (2) learning; and (3) 
recognition. The method has direct bearing on 
the representation. A learning phase is 
necessary for both types of methods. Two types 
of generative models are the bag-of-words 
approach [SIV 05] and the method based on 
parts-based models. The bag-of-words model 
chops an image into patches with indifference 
to the location of the patches. The patches may 
be based on grid cutting or using a feature 
detector [MIK 04]. The patches are put into a 
codeword dictionary, which is classified. This 
same dictionary is used for recognition. One of 
the strongest criticisms of this method is the 
lack of geometric and spatial information. 
Recent efforts for including spatial information 
include using correlograms [SAV 06], 
incorporating parts models to add constraints 
[SUD 07] as well as using a pyramid spatial 
partitioning to constrain the detected features 
[LAZ 06].  Even with these attempts, bag-of-
words methods still suffer from location 
problems as well as correspondence issues, 
which are inherent within and amongst objects. 
Part based approaches include time-consuming 

a priori geometric information [ZHU 06]. There 
is an explicit notion of correspondence between 
the image and model. Efficient methods exist 
for a large number of parts and positions in the 
image. Hierarchical models also allow for more 
parts [FID 09]. Discriminative (or Classifier 
based) methods cast the object detection and 
recognition problem as a classification problem 
[TOR 04]. The image is partitioned into a set of 
overlapping windows and a decision is taken at 
each window on whether it contains the target 
object or not. Other recent developments have 
shown the importance of context in object 
recognition [JIN 10] and that 3D is inherent 
and can actually even be computed from a still 
image [SAX 09]. There has been some success 
with 3D object category recognition [SUN 09]. 

ADDRESSING CURRENT LIMITATIONS 

We have addressed the state-of-the-art 
shortcomings in all of the three components – 
SLAM, SFM, object recognition – necessary for 
performing localization and recognition using 
computer vision.  We used tree trunks as a 
natural landmark to demonstrate SLAM with 
computer vision [ASM 09].  The results were 
demonstrated in a park setting, the camera 
triangulated between tree trunks in order to 
determine their position and the global location 
of the camera.  The results were compared 
against GPS ground truth and the results were 
within 1 cm accuracy.  A stereo camera was 
used to compute depth.  SFM can be used as an 
alternative to compute depth.  A collection of 
real time filters were developed [FAK 09] and 
showed that we could compute depth with a 
single camera on the fly.  The results were just 
as accurate as batch processing of the video 
sequence.  Batch processing is an off line 
process where the video data is first collected 
and then processed which cannot be used for 
online processing.  Rather than just focusing on 
using a single landmark, we developed an 
object class recognition algorithm [FAZ 07] that 
takes the best of all the current methods.  We 
were able to achieve recognition rates close to 
100% accuracy for standard benchmark 
databases. 

The computer vision algorithms that we 
have developed (i.e., SLAM, SFM, object 
recognition) are the building blocks for 



localization in environments where no GPS is 
available.  We now plan to fuse our efforts into 
a single process for that very purpose.  Another 
hurdle is to package these algorithms so that 
they execute on a low power microprocessor, 
as a real-time, wearable, portable solution is 
desirable.  Besides tracking people with 
Alzheimer’s and people who are blind in home 
settings, this technology can also be used in 
nursing homes and for applications where 
navigational assistance is necessary when 
cognitive and perceptual capabilities are 
compromised. 
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