Virtual Reality (VR) systems can affect the perception of the movements of users by providing visual feedbacks in an immersive environment. Altered visual feedback have a potential to work as intrinsic reinforcement factors to change individuals’ decision-making process and behaviors, and further to counteract the learned non-use of the more impaired limb of stroke survivors.

The objective of this pilot study is to examine whether virtual amplification of hand movements in VR system can affect the limb selection patterns of healthy subjects in unsupported reaching tasks.

METHODS

Visual amplification of hand movements
- Calculation for avatar’s hand’s position in VR (x1.5 amplification level to the right hand)

\[x_v = (x - x_s) \times 1.5; \ y_v = (y - y_s) \times 1.5; \ z_v = (z - z_s) \times 1.5 \]

RESULTS & CONCLUSIONS

- 31 healthy participants (age 21.9 ± 2.9 yrs; 15 females), naive to the experiment, right-handed (Edinburgh Handedness Inventory score > 0.85), participated in this study.
- Each subject completed 5 experimental blocks of 100 unsupported reaching trials in VR.
- Seven horizontal angles used for locating targets, and the number of trials assigned at each angle (half assigned at eye level, and half at shoulder level) within each block.

- The percent of right-hand use (RHP) was used to characterize subjects’ hand selections patterns
- Two-sided paired T-test to compare the RHP of the block with visual amplification to the prior block without visual amplification implemented for both levels of visual amplification.
- When with visual amplification (either x1.5 or x2), compared to baseline, the right-hand usage significantly increased in reaching tasks.

RESULTS

Table 1 Right-Hand Use Percentage Results

<table>
<thead>
<tr>
<th>Visual Amplification Levels</th>
<th>RHP in Prior Baseline Blocks without visual amplification</th>
<th>RHP in Experimental Blocks with visual amplification</th>
<th>P value of paired T-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1.5</td>
<td>66.2% ±16.8%</td>
<td>73.3% ±17.3%</td>
<td>P<0.003*</td>
</tr>
<tr>
<td>x2</td>
<td>63.5% ±17.3%</td>
<td>72.9% ±17.7%</td>
<td>P=0.013</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

- This work is supported by Rehabilitation Engineering Research Center-DC (RERC-DC), National Institute on Disability, Independent Living, and Rehabilitation Research of the Department of Health and Human Services, grant number 90REGE0004-01-00.
- We would like to thank all administrative and personnel support from RERC-DC and the Catholic University of America.
- We also would like to give thanks to the graduate students and interns in CUA who helped with protocol preparing and subject recruitment of this project. Their names are Han Hung Kuo, Thanh Phan, Hien Nguyen, Billy Vermillion, Rafael Casas, Melissa Sandison, Anyu Sun, Michael Taylor, Kaelin Martin, and Khue Phan.