INTRODUCTION

- Between 50-70% of individuals with Type II Diabetes Mellitus (T2DM) have diabetic peripheral neuropathy (DPN).
- DPN, the most common complication arising from T2DM, is characterized by impaired balance, functional mobility, pain, and sensory loss.
- While activities of daily living and quality of life are negatively impacted by DPN few effective interventions address this condition.
- The primary aim of this study was to examine the effects of short-term (4 weeks) focal muscle vibration (FMV) on pain, balance, and mobility in individuals with DPN.
- The secondary aim of this study was to assess whether baseline level of pain is associated with the intervention effects of FMV.

METHODS

Outcome Measures

- Berg Balance Scale (BBS)
- Cognitive and standard Timed-Up and Go (TUG)
- Brief Pain Inventory – Diabetic Peripheral Neuropathy (BPI-DPN)
- Semmes Weinstein Monofilament Test (SWMT) with the 5.07 (10g) filament

Subjects

- Thirteen participants met the inclusion criteria for this ongoing study, which included: diagnosis of Type II Diabetes Mellitus, secondary diagnosis of DPN of a one-year duration, age ≥18 years, independent ambulation, lack of other comorbidities, English-speaking, and normal/corrected vision.

- We categorized participants into three groups based on baseline pain level: Mild (0-3), Moderate (4-6), and Severe (7-10).

Data Analysis

- We applied vibration to each muscle 10 times (total 30 minutes on each leg), with an inter-session interval of one minute for every 10-minute session per muscle, 3 days/week, for 4 weeks.

- Paired t-tests or Wilcoxon signed-rank test when data are not normally distributed.

RESULTS

- After intervention we found significant improvements in: TUG scores (p=0.0036), TUG cognitive scores (p<0.001), SWMT (p=0.0389), and in the average pain subscale (p=0.03)

DISCUSSIONS AND CONCLUSIONS

- Findings show that FMV significantly improves mobility, pain, and sensation.

- Improvement in average pain and walking ability subscases of BPI-DPN corroborates improvement in mobility and overall pain

- Limitations: small sample size, large variation not normally distributed All values represented as mean (SD)

ACKNOWLEDGEMENTS

We are grateful to the participants who gave their time and to the facilities provided by the Department of Rehabilitation Sciences, Technology for Occupational Performance Laboratory. This work supported in part by an Exploratory Grant award from Harold Farrell Diabetes Center

LITERATURE CITED