THE USE OF KINECT TO NAVIGATE A VIRTUAL EXERCISE ENVIRONMENT BY PEOPLE POST-STROKE OR WITH CEREBRAL PALSY

Sean Pool, Laurie Malone, Scott Bickel, Gerald McGwin, Alan Eberhardt, James Rimmer

1. Department of Biomedical Engineering, 2. UAB/Lakeshore Research Collaborative, 3. School of Health Professions, 4. Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL

ABSTRACT

People with mobility impairments encounter numerous barriers to meeting exercise recommendations. One approach to facilitate exercise is through interaction with virtual reality, requiring navigation through a virtual environment. The present study assessed Microsoft Kinect as an interface for choosing between multiple routes within a virtual environment through body movements (arms, torso, shoulder, or head). The approach was tested on individuals post-stroke or with cerebral palsy (CP). Outcomes including success rate and questionnaire feedback were evaluated within- and between-subjects. The results showed that all movements were viable for individuals post-stroke, while hand extend/raise and head nod were most viable for those with CP. Overall, this study demonstrated that Kinect may be a useful tool for persons with mobility impairments to interface with virtual exercise environments.

ACKNOWLEDGEMENTS

The authors would like to thank the Lakeshore Foundation Research staff, especially Lori Theriot, for their help recruiting participants and for conducting this study. This project is supported by RERC RecTech funded through the National Institute on Disability and Rehabilitation Research, Grant #H133E120005

REFERENCES


