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ABSTRACT 
 

Power wheelchairs (PWCs) potentially effect increased 
independence for people with severe mobility disabilities. 
However, many users report difficulty in performing 
activities of daily living or even functional steering. Smart 
wheelchairs aim to accommodate this population by 
augmenting power wheelchairs with computational 
assistance. To maximize the driver’s independence, 
computational intervention should be invoked only when 
necessitated by contextual and human factors. In this study, 
we focused on detecting human factors that entail 
computational assistance. Our specific aim was to 
computationally model the myoelectric behavior of arm 
muscles during PWC driving. Four driving tasks by two 
participants were fitted with vector autoregression models, 
which were cross-validated using a leave-one-out procedure. 
Individualized models of each participant yielded at least 
90% accuracy, and a combined model of both participants 
yielded 80% accuracy. While more participants and training 
sequences are needed, the myoelectric models showed 
promise at characterizing arm activities during PWC 
driving. These results can inform the development of smart 
wheelchairs that adapt the level of shared control in 
response to the state of the driver. 
 

BACKGROUND 
 

Power wheelchairs (PWCs) empower people with 
severe mobility disabilities to live more independently. In 
2007, there were 173,000 PWC users in the Medicare 
system alone (Levinson, 2009), and subsequent totals have 
likely risen as a result of increased accessibility, 
accommodations, and aging. However, PWC users can 
present with secondary impairments that hinder or prevent 
functional PWC usage. A survey of 200 clinicians indicated 
that using a PWC made it “extremely difficult or 
impossible” to perform activities of daily living in 
approximately 9–10% of clients and that secondary 
impairments prevented functional steering in up to 40% of 
clients (Fehr, Langbein, & Skaar, 2000). Smart wheelchairs 
aim to accommodate this population by augmenting PWCs 
with computational assistance (Simpson, 2004). 

However, smart technologies require a careful balance 
between human control and computational assistance. While 
overly intrusive automation will generally result in 
successful task completion, the Human Activity Assistive 
Technology (HAAT) model encourages assistive technology 
professionals to consider human and contextual factors 

beyond the activity itself, including why and how activities 
are performed (Cook & Polgar, 2015). For many clients, the 
ability to perform activities independently embodies a 
personal meaning beyond merely whether the task was 
completed. Furthermore, excessive computational assistance 
may induce over-reliance on automation and degradation of 
skills (Cooper, Ohnabe, & Hobson, 2006). To minimize 
these effects, smart technologies should relinquish control to 
the driver as much and as often as possible. 

By detecting contextual and human factors in real time, 
smart technologies can adaptively modulate the degree of 
computational intervention based on the detected states of 
the context and driver (Figure 1). Previously, we introduced 
a contextual risk index for PWC driving by using a Kinect 
sensor to map the environment and a Markov model to 
compute driving costs (Yang, Patil, & Jan, 2014). In the 
current paper, we focus on the state of the driver by 
modeling the myoelectric behavior of the driver’s arm 
during PWC driving. The long-term goal is to predict the 
onset of motor difficulties, which can then be combined 
with the contextual feedback from our Kinect-Markov 
framework to assign dynamic levels of shared control. 
 

PURPOSE 
 

The purpose of this study was to computationally model 
myoelectric behavior in the arm during joystick control of 
basic PWC driving tasks. Results will be used to inform the 
development of adaptive smart wheelchairs. 
 

METHODS 
 
Participants 

Two members of the Rehabilitation Engineering 
Laboratory participated in this study. Neither participant 
presented with a disability. 
 

 
Figure 1: The level of shared control in smart technologies 

can be adaptively modulated if the systems have 
real-time awareness of contextual and human factors. 



 

 

Instrumentation 
All driving sequences were performed in a front-wheel-

drive PWC (model C400; Permobil, Inc.; Lebanon, TN). 
Three-lead myoelectric amplifiers (model EMG100C; 
Biopac Systems, Inc.; Goleta, CA) were used to sample 
upper limb myoelectric data via bipolar surface electrodes 
(model EL507; Biopac System, Inc.; Goleta, CA). The 
sampling rate was set to 2,000 Hz with a 60 Hz notch option 
to mitigate power line interference. 
 
Procedure 

Electrodes were placed on five arm muscles: flexor 
carpi radialis, extensor carpi ulnaris, extensor carpi radialis, 
pronator teres, and triceps brachii. Electrode placements 
were verified using mild electrical stimulation. Participants 
were asked to perform four driving activities, 
 

§ Forward (FW): roll forward for 10 m 
§ Rightward (RW): turn 90° rightward while moving 

forward 
§ Backward (BW): roll backward for 5 m 
§ Leftward (LW): turn 90° leftward while moving 

forward 
 
which were based on tasks #8, #10, and #11 of the 
Wheelchair  Skills Test for PWCs (Kirby, Swuste, Dupuis, 
MacLeod, & Monroe, 2002). Each activity was repeated 
five times with brief resting periods in between. 
 
Data Reduction 

The data were centered to remove the DC offset and 
decimated to 1,000 Hz to reduce the computational 
modeling cost. A bandpass filter was applied using a 
Butterworth filter with low- and high-cutoff frequencies of 
15 Hz and 500 Hz, respectively. Signals within each 
myoelectric channel were normalized to the peak amplitude 
observed throughout each activity (Halaki & Gi, 2012). 
 
Data Analysis 

Vector autoregression (VAR) was introduced by Sims 
(1980) as a method to model the joint dynamical behavior of 
econometric variables, but has since been applied to other 
time-series domains. In this study, VAR was utilized to 
model the behavior of five myoelectric channels during 
PWC joystick control. 

A 𝑝th-order VAR process is a linear dynamical system 
that models current observations using past observations, 
 

 𝐂 = 𝐀 ∙ 𝐏 + 𝐛 + 𝐞 (1) 
 

where 𝐏 contains the past 𝑝 observations (i.e., 𝑝 “lags”) of 
each channel, 𝐂 contains the current observations of each 
channel,  𝐀 is the coefficient matrix, 𝐛 is the bias vector, and 
𝐞 is the error vector. 

In a condensed form, the bias vector 𝐛 is concatenated 
to 𝐀 as its last column, and an all-ones vector is appended to 
𝐏 as its last row, 

 𝐀 ← 𝐀 𝐛  (2) 
 

 𝐏 ← 𝐏
𝟏  (3) 

 

 𝐂 = 𝐀 ∙ 𝐏 + 𝐞 (4) 
 

where the coefficient matrix 𝐀 can be estimated with the 
least squares method. The VAR models were custom coded 
in MATLAB (version 2013a; The MathWorks, Inc.; Natick, 
MA). 
 
Model Validation 

A VAR coefficient matrix was modeled for each class 
(i.e., 𝐀! , where 𝑖 ∈ FW,RW, LW,BW ) using training 
sequences. Each 𝐀! model was then applied to validation 
sequences. For each sequence, the class 𝑖 with the minimum 
mean squared error was selected as the prediction, 
 

 𝑖 = arg  min
!

𝔼 vec 𝐂 − 𝐂!
⊺
∙ vec 𝐂 − 𝐂!  (5) 

 

where 𝐂 was the true sequence and 𝐂!  was the sequence 
reconstructed using 𝐀!. 

Evaluation sets were constructed using leave-one-out 
cross-validation, in which each sequence was successively 
excluded from the training set to serve as a validation 
sequence. Under this scheme, the total number of evaluation 
sets equaled the total number of observation sequences. 
Three VAR models were validated: an individualized model 
for the first participant, an individualized model for the 
second participant, and a combined model for both. 
 

RESULTS 
 

Mean squared error was computed as a function of the 
number of the past 𝑝 observations for 𝑝 = 1,2,… ,50 (Figure 
2). Based on the observed performance plateau, a lag order 
of 𝑝 = 30 was selected for the coefficient matrices of each 
VAR model (Figures 3, 5, and 7). 
 
Individualized Model (First Participant) 

Using the training models to test the training set 
resulted in 100% overall accuracy (Figure 4a). Using the 
training models to test the validation set resulted in 95.0% 
 

 
Figure 2: Mean squared error as a function of lag. 



 

 

overall accuracy (Figure 4b). The sole error resulted from a 
LW sequence being confused for a BW sequence. 
 
Individualized Model (Second Participant) 

Using the training models to test the training set 
resulted in 100% overall accuracy (Figure 6a). Using the 
training models to test the validation set resulted in 90.0% 
overall accuracy (Figure 6b). A RW sequence was confused 
for a BW sequence, and a LW sequence was confused for a 
FW sequence. 
 
Combined Model 

Using the training models to test the training set 
resulted in 90.3% overall accuracy (Figure 8a). Using the 
training models to test the validation set resulted in 80.0% 
overall accuracy (Figure 8b). The most common 
misclassification was the LW class being confused with the 
FW class. 
 

DISCUSSION 
 

We used VAR processes to model the myoelectric 
behavior of the arm during four basic PWC driving tasks. 
Based on preliminary findings, VAR models showed 
promise in discriminating between normal and abnormal 
myoelectric patterns. In particular, the individualized VAR 
models performed well. Training sequences were classified 
perfectly, and validation sequences were classified with at 
least 90% accuracy. 
 

 
Figure 3: Coefficient matrices of the first individualized 

model for each activity class: (a) forward, (b) rightward, (c) 
backward, and (d) leftward. 

 

 
Figure 5: Coefficient matrices of the second individualized 
model for each activity class: (a) forward, (b) rightward, (c) 

backward, and (d) leftward. 

However, the combined VAR model performed more 
poorly. Unlike the individualized models—in which no 
training sequences were misidentified—the combined model 
yielded 35 misclassified training sequences. That is, 
sequences that contributed to the construction of the 
combined VAR model were then misclassified by the very 
same model. This was likely due to the increased variation 
from the inclusion of a second participant. Performance 
further declined in the validation set, in which more than 
half of all LW sequences were confused with FW 
sequences. This phenomenon was not observed in the 
individualized models. Accordingly, the difficulty of the 
combined model to characterize LW sequences may suggest 
that inter-participant variation is higher for LW joystick 
movements compared to other classes. Furthermore, LW 
class confusion may be related to driver handedness. Since 
both participants were right-handed, LW joystick 
movements were adductive; for left-handed participants, the 
adductive task would correspond to the RW class. Thus, for 
left-handed participants, the VAR model may produce 
higher confusion for RW sequences. 

While our results are preliminary, they demonstrate the 
potential of myoelectric models for adaptive shared control. 
The models can be used to inform our smart wheelchair on 
the degree of shared control needed at any given point in 
time. For example, consider a smart navigation system that 
computes a heading angle of 𝑥° while the driver executes a 
heading angle of 𝑦°. Depending on how closely the driver’s 
myoelectric signals were to match the VAR model, the 
 

 
Figure 4: Confusion matrices from testing the first 

individualized model on: (a) the training set and (b) the 
validation set. 

 

 
Figure 6: Confusion matrices after testing the second 

individualized model on: (a) the training set and (b) the 
validation set. 



 

 

 
Figure 7: Coefficient matrices of the combined model for 

each activity class: (a) forward, (b) rightward, (c) backward, 
and (d) leftward. 

 
 
smart system could adapt the ratio of computational and 
human input; i.e., if the VAR model were to indicate a high 
likelihood that the driver had attempted a desired action, the 
computational weight could be diminished, whereas if the 
VAR model were to indicate abnormal myoelectric activity, 
the computational weight could be augmented. 

This study had limitations. First, our sample size was 
low. Second, our participant sample did not include people 
with upper limb impairments. Third, our method assumed 
signal stationarity, and there is no clear consensus on the 
pure-, quasi-, or non-stationarity of myoelectric signals 
(Raez, Hussain, & Mohd-Yasin, 2006). Nevertheless, the 
method performed well in this applied setting. 

In future work, more participants will be recruited, 
particularly people with upper limb impairments. More 
joystick actions will be included to accommodate a wider 
range of movements common to PWC driving, and more 
observation sequences per action will be collected to 
increase the model’s robustness. Lastly, feature selection 
and extraction will be explored to reduce channels and 
dimensionality, respectively. 
 

CONCLUSION 
 

Vector autoregression showed promise for modeling 
myoelectric behavior in the arm during PWC driving. Given 
more participants and training data, these models can be 
exploited by adaptive smart wheelchairs to dynamically 
adjust the ratio of human-computer shared control. 
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Figure 8: Confusion matrices from testing the 

combined model on: (a) the training set and (b) the 
validation set. 
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