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ABSTRACT 

 
Due to the lack of accurate and reliable commercial 

activity monitors for manual wheelchair users (MWUs), 
many researchers have been developing custom energy 
expenditure (EE) models that can be applied to this 
population. Nightingale et al. (2014) have recently 
developed two models that are tailored to MWUs based on a 
commercial monitor, ActiGraph GT3X (1) worn at the wrist 
and upper arm, respectively. In this study, we evaluated 
these models in eight MWUs during resting, wheelchair 
propulsion and arm ergometry exercises. The accuracy of 
the models was compared against the gold standard 
measured by a portable metabolic cart. Results showed that 
both wrist (Mean signed error (MSE): 5.16±94.8, Mean 
absolute error (MAE): 70.6±63.4%) and upper arm (MSE: 
18.3±72.7%, MAE: 58.8±46.4%) models performed better 
than the manufacturer’s default model when applied to the 
wrist (MSE: -15.1±104.3%, MAE: 74.1±74.9%) and the 
upper arm (MSE: -34.5±133.9%, MAE: 103.8±91.2%). 
However, the custom models still yielded significant errors 
in estimating EE in MWUs. The estimated EE by the wrist 
and the upper arm models showed high correlations with the 
criterion EE (r=0.77 and 0.81 respectively), as well as high 
agreement (ICC (3, 1) = 0.79 and 0.86 respectively). A more 
accurate custom EE prediction model for a more diverse set 
of physical activities (PA) is needed to allow MWUs and 
clinicians to use ActiGraph for assessing the PA levels on a 
daily basis. 
 

BACKGROUND 
 

Regular physical activity (PA) provides numerous 
health benefits to manual wheelchair users (MWUs). 
Besides reducing risks of developing chronic diseases and 
health conditions such as cardiovascular diseases, diabetes, 
obesity, and cancers, regular PA also helps MWUs to 
develop and maintain joint flexibility, muscle strength, and 
balance (2, 3). In addition, Healthy People 2020 has reported 
that regular PA could provide MWUs a sense of control, 
enhance their feelings of well-being through emphasizing 
their abilities instead of their physical limitations, which in 
turn encourages MWUs to participate in their community 
and social events (2). Despite all the physical, physiological 
and psychological benefits, most MWUs still live a 
sedentary lifestyle. In most cases, they are not aware of 
what their current activity levels are, how much more PA 

they should be engaging in, and how often they should 
maintain the recommended PA level.  

There are many commercially available activity 
monitors that aim to objectively measure the quantity of the 
PA of individuals on a daily basis. Some of these devices 
are proven to be accurate in predicting EE in ambulatory 
population, with relative error from -3.64% to -12.07% (4). 
However, none of them are designed for, and performed 
well in, MWUs who rely on their upper extremities for most 
of the PA. Without an accurate and reliable assessment tool, 
it is more challenging for MWUs to develop and maintain a 
healthy and active lifestyle. It is also difficult for clinicians 
to make any recommendations to MWUs on interventions 
that promote physical fitness. Hence, Nightingale et al. 
(2014) developed two custom energy expenditure (EE) 
prediction models for MWUs based on a commercial 
monitor, ActiGraph GT3X (1), when worn  on the right wrist 
and upper arm, respectively. In this study, we evaluated the 
accuracy of the two models using a separate cohort of 8 
MWUs. We hypothesized that the two prediction models 
would have a better overall performance in estimating EE in 
MWUs than the default model used in ActiGraph. 
 

METHOD 
 

The study was approved by the Institutional Review 
Board at the University of Pittsburgh. Eight subjects were 
recruited. Subjects were between 18 and 75 year-old, lived 
in the community, used manual wheelchairs as a primary 
means of mobility, were at least six months post-injury, 
medically stable, able to tolerate sitting for 3 hours, and had 
no active pelvic or thigh wounds. Subjects who were 
pregnant and had cardiovascular diseases at the time of 
testing were excluded. 

 
Instrumentation  

Two ActiGraph GT3X (ActiGraph, LLC.) and a K4b2 
portable metabolic cart (COSMED srl, Rome, Italy) were 
worn by each subject during testing. Each subject wore an 
ActiGraph monitor on the dominant upper arm over the 
triceps and another one on the dominant wrist. Each subject 
also carried the K4b2 metabolic cart device over the chest 
area and wore a facial mask that collected gas sample during 
activity. Both ActiGraph devices were set at a sampling rate 
of 30Hz and the data were downloaded at 15s epoch using 
the ActiLife 6.1 software. The EE measured by the K4b2 
was served as a criterion. The EE was estimated based on 



the custom EE prediction models recently developed by 
Nightingale et al. (2014) for the MWUs. 
 
Custom prediction models (1) 

The following two prediction models estimated the EE 
(kJ/min) using the activity counts per minute (CPM) 
measured by the ActiGraph monitors at the wrist and upper 
arm in all three (x, y, z) directions (Eq. 1 & 2). 

 
𝐸𝐸𝑤𝑟𝑖𝑠𝑡 = 0.000929 ∗ 𝐶𝑃𝑀 − 0.284818                  Eq. 1 

 
𝐸𝐸𝑢𝑝𝑝𝑒𝑟  𝑎𝑟𝑚 = 0.001642 ∗ 𝐶𝑃𝑀 + 0.204579         Eq. 2 

 
Procedure 

The study was explained to the subjects, and written 
consent forms were obtained from them prior to 
participating in the study. Subjects were first asked to 
complete a basic demographic questionnaire and had their 
weight, height, and skinfold thickness at biceps, triceps, 
subscapular and suprailiac measured. After that, all subjects 
began with a 30 minute resting trial in which they sat in 
their own chair. Subjects were asked to perform any six 
activities from the following list:  propulsion at self-selected 
normal, fast and slow speed, propulsion at a self-selected 
normal speed up and down a ramp, propulsion on a 
sidewalk, stop-and-go propulsion (propelled for a certain 
distance and stopped for 15-30s and then continued 
propulsion), performed arm ergometry exercises at self-
selected normal, fast and slow speed and resistance. 
Subjects performed each activity of their choice for at least 
10 minutes. In between trials, subjects were allowed to rest 
for at least 5 minutes. All the activities took place at a 
University based laboratory.  
 
Data Analysis 

The data from the K4b2 and the ActiGraph was 
analyzed using MATLAB (R2014a, The Mathworks Inc.) 
and SPSS Statistics 22 (IBM, Corporation). The unit of the 
predicted EE from the custom models was converted to 
kcal/min before any analysis. Both the predicted EE and the 
EE estimated by the default model of the ActiGraph monitor 
were compared against the criterion EE. The mean signed 
percent error (MSE) and mean absolute error (MAE) were 
calculated for both anatomical positions using Eq. 3 & 4. 
The Pearson coefficient of the predicted EE and the criterion 
EE were also computed to explore the strength of the 
relationship between the predicted EE and the criterion. The 
intraclass correlation coefficient (ICC) with absolute 
agreement was computed to evaluate the agreement of the 
prediction models and the ActiGraph default models in 
estimating EE. In addition, Bland-Altman plots were 
constructed to show the agreement of the predicted EE and 
the criterion. Results were presented in mean ± standard 
deviation. 

𝑀𝑆𝐸 = !!"!!!!!!"#$%&'$"(
!!"!!!

∗ 100%                       Eq. 3 

𝑀𝐴𝐸 = !"#(!!"!!!!!!"#$%&'$"()
!!"!!!

∗ 100%                Eq. 4 

RESULTS 
 
Eight MWUs were recruited, and seven of them were 

dominant on the right side. Six of them had spinal cord 
injury, one had spina bifida, and one was an amputee. Each 
of them successfully completed all six activity trials, 
including 33 to 55 minutes of wheelchair propulsion 
activities, 10 to 33 minutes of arm ergometry exercises, and 
30 minutes of resting. The MSE and MAE of all activities 
(96 – 100 min) were computed for each subject (Table 1). 
Overall, the MSE showed that the default models, regardless 
of the anatomical positions, overestimated the EE; while the 
prediction models underestimated the EE. The wrist 
prediction model (MSE: 5.16±94.8, MAE: 70.6±63.4%) was 
slightly more accurate than the default model (MSE:  
-15.1±104.3%, MAE: 74.1±74.9%). The upper arm 
prediction model (MSE: 18.3±72.7%, MAE: 58.8±46.4%) 
was also more accurate than the default model (MSE:  
-34.5±133.9%, MAE: 103.8±91.2%). All models, despite 
prediction and default, showed very large variations in EE 
estimation in MWUs.  
 
Table 1. The percent errors of the EE predicted by the 
default models of the monitors and the custom models 
during WP (wheelchair propulsion), AE (arm ergometry 
exercise), REST (resting), and ALL activities. 

 Activity 
Wrist Arm 

Default Prediction Default Prediction 

M
SE

 (%
) WP -58.3±78.0 -15.3±76.2 -87.1±107.0 -17.1±67.0 

AE -57.3±117.0 -76.7±93.9 -123.1±138.6 -15.6±54.9 

REST 74.3±62.1 90.2±33.9 95.8±15.8 91.0±11.7 

ALL -15.1±104.3 5.16±94.8 -34.5±133.9 18.3±72.7 

M
A

E
 (%

) WP 65.1±72.4 47.1±61.7 94.4±97.9 43.7±53.5 

AE 67.9±111.2 86.3±85.1 133.3±128.8 42.6±37.8 

REST 91.0±32.9 92.6±26.4 96.5±10.9 91.1±11.4 

ALL 74.1±74.9 70.6±63.4 103.8±91.2 58.8±46.4 
 

The Pearson coefficients of the predicted EE and the 
criterion EE at the wrist and upper arm were found. The EE 
estimated by the upper arm (r=0.81, SEE=1.56kcal/min) and 
the wrist (r=0.77, SEE=2.12kcal/min) prediction models 
showed high correlations with the criterion EE (Figure 1a & 
1b). The agreement of the two prediction models was 
calculated. The EE estimated by both prediction models 
showed higher agreement with the criterion than the EE 
measured by the default models. The ICC (3, 1) was 0.862 



[95% confidence interval (c.i.) 0.839 – 0.881] for the upper 
arm prediction model; while the ICC (3, 1) was 0.643 [95% 
c.i. 0.544 – 0.716] for the default model. The wrist 
prediction model showed ICC (3, 1) = 0.793 [95% c.i. 0.765 
– 0.817]; while the default model showed ICC (3, 1) = 0.753 
[95% c.i. 0.709 – 0.790]. The Bland-Altman plots were also 
constructed to illustrate the agreements of the two prediction 
models with the criterion EE (Figure 2a & 2b). For the wrist 
position, the mean difference between the EE predicted by 
the manufacture model and the criterion was -0.49 kcal/min 
[95% c.i. -4.61 – 3.63], and that between the EE predicted 
by the custom wrist model and the criterion was -0.11 
kcal/min [95% c.i. -4.53 – 4.32]. For the upper arm position, 
the mean differences were -1.39 kcal/min [95% c.i. -9.10 – 
6.32] and 0.31 kcal/min [95% c.i. -2.88 – 3.49] for 
manufacture model and custom upper arm model, 
respectively. The EE estimated by the upper arm prediction 
model showed the highest agreement with the criterion EE. 

  
Figure 1a: The linear relationship between the criterion EE 
and the estimated EE by the wrist prediction models.  

 
Figure 1b: The linear relationship between the criterion EE 
and the estimated EE by the upper arm (bottom) prediction 
models.  

 
Figure 2a: The Bland-Altman plot of the measured EE by 
the default model (top) and the wrist prediction model 
(bottom). 

 
Figure 2b: The Bland-Altman plot of the measured EE by 
the default model (top) and the upper arm prediction model 
(bottom). 
 

DISCUSSION 
 

According to the MSE and the MAE, the EE estimated 
by the wrist and upper arm prediction models were better 
than the ActiGraph default manufacturer’s model; however, 
their performance was still poor (Table 1) when compared 
to the performance of the monitors in ambulatory population. 
The average MSE of commercial tri-axial activity monitors 
in ambulatory population was -6.85% [95% c.i. -18.2 – 
4.49%], and none of the models evaluated in this study were 
comparable to that. In addition, both the wrist and upper 
arm prediction models overestimated the EE during 
wheelchair propulsion and arm ergometry exercises, but 
underestimated resting. It was clear that even the prediction 
models performed a little better for wheelchair propulsion 
than arm ergometry exercises and resting, the estimation 
error for propulsion remained high.  

y = -0.84+1.35x 
R2 = 0.585 

y = -0.77+1.17x 
R2=0.662 



The inaccurate results we obtained could be due to the 
differences between study protocols used in our evaluation 
study and in the model development study conducted by 
Nightingale et al. (2014). Subjects in Nightingale et al. 
(2014) were asked to perform structured wheelchair 
propulsion (2, 4, 6, 8km/h) and deskwork (type out a script) 
(1); while our subjects performed resting instead of deskwork, 
and propulsion and arm ergometry exercise at self-selected 
speed and intensity. In addition, subject characteristics in 
our study are different from Nightingale et al. (2014). In 
Nightingale et al. (2014), 15 MWUs and 2 able-bodied 
subjects who were familiar with wheelchair propulsion were 
recruited for developing the models (1). The relatively small 
sample size was insufficient to build models that could be 
generalized to other MWUs, resulting in large estimation 
errors and variations. Although MWUs with spinal cord 
injury and spina bifida were recruited in both studies, 
Nightingale et al. (2014) also included MWUs with 
fibromyalgia and complex regional pain syndrome (1) while 
our study included an amputee. Furthermore, Nightingale et 
al. (2014) asked subjects only wear ActiGraph monitors on 
the right upper arm over triceps and wrist (1) while we put 
the devices on dominant side. Once we excluded the data 
collected from the left-handed subject, the overall MSE and 
MAE decreased by 5% and 20% respectively for both 
custom models. 

Despite the inaccuracy of the custom models, the 
correlations of the EE predicted by the custom models were 
improved when compared to the EE estimated by the 
manufacturer’s default models. For the wrist position, the 
correlation between the estimated EE and the criterion EE 
were increased from 0.66 (SEE: 2.06kcal/min) to 0.77 (SEE: 
2.12kcal/min), and for the upper arm position, it increased 
from 0.79 (SEE: 3.18kcal/min) to 0.81 (SEE: 1.56kcal/min).  
Like Nightingale et al. (2014), many studies only used 
correlation to evaluate the performance of the monitors or 
custom models. While correlation might be helpful for 
researchers to improve the technology, it might not be as 
useful for real-world use. If a clinician wants to recommend 
a monitor to help a MWU to track PA for a weight loss 
program, a high correlation with the criterion measure does 
not suggest that a monitor would be able to accurately 
measure the energy spent each day. High validity is required 
for monitors to be used in clinical settings (5). A monitor that 
can accurately assess PA and EE in MWUs is important in 
assisting clinicians to evaluate their patients’ needs in 
getting suitable physical fitness interventions, track patients’ 
progress and compliance; and more importantly, it helps 
clinicians to evaluate the effectiveness of new interventions 
that aim at increasing PA to reduce the risk of developing 
secondary health conditions in MWUs, and facilitate dose-
response research (5).  

To improve the future development of monitors or 
custom models, expanding the sample size and including 
MWUs with various diagnoses will help increase the 
generalizability of the results. Having less structured 

experimental designs or less strict PA protocols may better 
reflect how the monitors are used by the MWUs in real life. 
Using data collected from free-living activities in MWUs 
may benefit the development of monitors for everyday use. 
Last but not least, the accuracy is a crucial indicator of how 
well commercial monitors or custom models can quantify 
PA in MWUs; reporting the percent error of the predicted 
EE against the criterion will assist clinicians in decision 
making and provide a standardized way for researchers to 
compare results across different studies. 

 
CONCLUSION 

 
Overall, both the wrist and upper arm prediction models 

developed by Nightingale et al. (2014) performed better in 
quantifying PA in MWUs than the ActiGraph default 
models; but none of the prediction models was as good as 
the ActiGraph’s performance in ambulatory population. 
Though, the estimated EE by both prediction models 
showed improved correlation and agreement with the 
criterion EE.  
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