
 1 

EEG BRAIN-COMPUTER INTERFACE AS AN ASSISTIVE TECHNOLOGY: 
ADAPTIVE CONTROL AND THERAPEUTIC INTERVENTION 

 
Qussai M. Obiedat, Maysam M. Ardehali, Roger O. Smith  

Rehabilitation Research Design & Disability (R2D2) Center, Department of 
Occupational Science & Technology, University of Wisconsin-Milwaukee, 

Milwaukee, WI 

ABSTRACT 

Recently, there has been an increasing 
interest in developing brain-computer interface 
(BCI) technology. BCI technology is a 
promising venue to overcome the shortcomings 
of the available rehabilitation methods of 
restoring normal motor function in people with 
disabilities. BCI have the potential to improve 
the quality of life and aid motor recovery of 
people with severe motor impairments through 
the development of both adaptive control and 
therapeutic intervention BCI systems. This 
paper reviews several affordable EEG systems 
that have been developed recently, provides an 
example of an EEG-BCI-FES system, and 
discusses several factors that both 
rehabilitation engineers and therapists have to 
fulfill in order to facilitate the adoption of BCI 
systems in the rehabilitation field and clinical 
practice. 

INTRODUCTION 

In the past couple of decades, there has 
been an increasing interest in developing brain-
computer interface (BCI) technology in gaming, 
military control of equipment, and in 
biofeedback systems. In the rehabilitation field, 
BCI technology was developed to improve the 
quality of life and aid motor recovery of 
individuals with various types of disabilities 
(Daly & Wolpaw, 2008). The need for such 
innovative technology comes from the 
shortcomings of the available rehabilitation 
methods to restore motor function for 
individuals suffering progressive diseases, such 
as multiple sclerosis (MS), amyotrophic lateral 
sclerosis (ALS), or Parkinson’s disease, or for 
many individuals with severe motor 
impairments due to stroke, cerebral palsy, or 
injuries to the brain or spinal cord. The 
applications of BCI technology in rehabilitation 

can be classified into two main categories: 
Adaptive control and Therapeutic intervention. 
The first category focuses on enabling people 
with disabilities (PWD) to control and interact 
with their surrounding environment. 
Communication programs, such as P300 speller 
(Cecotti, 2010), are good examples of BCI 
systems in this category. The second category 
aids in restoring impaired motor functions of 
both upper and lower extremities, such as the 
restoration of motor function through using 
brain guided functional electrical stimulation 
(FES) (Teo & Chew, 2014).  

The purpose of this paper is to review the 
different components of BCI systems and their 
working process. Compare some of the 
available electroencephalography (EEG) 
systems, provide an example of a BCI system 
to guide the delivery of functional electrical 
stimulation (FES), and discuss additional 
requirements that need to be implemented in 
order to facilitate adoption of BCI systems in 
clinical practice.  

A review of BCI Systems 

Generally, BCI systems are responsible for 
translating brain-generated electrophysiological 
signals to control signals, which in turn are 
used to drive external devices or applications. 
The general working process of a BCI system 
can be broken down into steps shown in Figure 
1. Acquiring brain electrophysiological signals 
via proper electrodes is the first step. Then the 
signal is processed and classified. Finally, the 
signal classification component which is 
composed of the brain signal feature extraction 
and the translation of these signals into output 
commands for a certain device or application 
(Schalk, McFarland, Hinterberger, Birbaumer, & 
Wolpaw, 2004).  
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Electrophysiological Brain Signals 

Electrophysiological signals of brain can be 
acquired either invasively or through non-
invasive methods. Invasive acquiring of signals 
is performed through direct implantation of 
electrodes in the individual’s brain either at the 
cortical surface (electrocorticographic [ECoG] 
activity), or within the brain (local field 
potentials [LFP] or neural action potentials 
[spikes]) (Daly & Wolpaw, 2008). Brain signals 
can be acquired non-invasively by EEG through 
placing electrodes on the scalp. EEG signals 
consist of different frequency bands, each with 
its own characteristics (Subasi, 2007).  

Although acquiring signals using invasive 
methods results in a better topographical 
resolution and wider frequency ranges, but 
implantation of electrode arrays within the 
brain arises several safety concerns. On the 
other hand, EEG is simple and non-invasive, 
but has limited topographical resolution and 
frequency range, and is prone to contamination 
from electro-oculographic or electromyographic 
activity from cranial muscles (Daly & Wolpaw, 
2008). However, recent advancement in 
technology and signal processing resulted in 
the development of more efficient EEG 
systems. 

 
Figure 1: Overview of BCI Systems 

EEG systems 

Wide variety of EEG systems have been 
developed recently. G.tec® Medical Engineering 
is one of the leading companies that provides 
advanced, research grade EEG systems (Figure 
1). However, these systems are expensive. 
Emotive, Inc. (Figure 2) and OpenBCI group 
(Figure 3) recently developed an affordable and 
portable EEG acquisition system. Such systems 
provide the ability to study brain activities while 
the individual engages in daily activities, and a 
practical solution for operating different BCI 
applications in different contexts and settings. 
Different characteristics of the three systems 
are described in Table 1. 

 
Figure 2: G.tec® g.USBamp & g.GAMMAbox 

EEG-BCI system process 

Most EEG-BCI systems, if not all, use the 
same general process. When EEG electrodes 
are optimally selected and placed over subject 
scalp, signals associated with the predefined 
task can be extracted. In neurological 
rehabilitation, most of the available BCI 
applications target either the motor cortex area 
or the visual cortex in the occipital region. In 
both cases, individuals use a particular mental 
strategy to focus their attention either on a 
specific body movement or on an external 
stimulus in order to generate a specific 
response. While signal acquisition from the 
brain is in session, this signal needs to go 
through the process of feature extraction and 
classification in order to be meaningful to the 
application. The classification strategy depends 
on the response to detect one of the following 
potentials: event-related potentials (ERP), 
steady-state evoked potentials (SSVEP), motor 
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imagery (MI) or slow cortical potentials (SCPS). 
These responses can be provoked by an 
external stimulus (visual or auditory), or 
through movement imagination (Cecotti, 2010; 
Pfurtscheller, Müller-Putz, Scherer, & Neuper, 
2008). In the case of imagination of movement, 
this means that the BCI system should be able 
to train itself to recognize patterns associated 
with imagination of movement of right/left 
hand, for example.  
 

 
Figure 3: Emotive EPOC+ 

In order for the BCI system to be able to 
train itself, the EEG signal must be processed 
first, and in real-time in most cases. Signal 
processing usually entails 1) noise reduction, 2) 
feature extraction, and 3) classification 
(Roman-Gonzalez, 2012). Noise reduction 
phase utilizes filters (low-pass, high-pass, mid-
pass, and notch) to provide a “clean” signal to 
its output.  

After the EEG signal is devoid of 
contamination to the best possible extent, the 
feature extraction phase begins. In this phase, 
the goal is to separate useful values (features) 
of the signal from the rest. Sometimes noise 
reduction is also embedded in this phase. These 
values or features should be representative of 
different mental states. Usually, after the 
features are extracted, they are arranged in a 

vector, known as a feature vector (Lotte, 
2014). Classification phase is concerned with 
assigning a class to a feature vector, 
corresponding to the identified mental state. 
Algorithms responsible for classification are 
called “classifiers”. In other words, this step 
acts as an interface between features and 
commands. Classifiers use pattern recognition 
and machine learning in order to learn how to 
classify different feature vectors (Lotte, 2014; 
Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 
2007). This means that classification methods 
are unique and tailored for each subject, as the 
same mental tasks do not usually evoke the 
same responses in different individual’s brains. 
The patterns by which the classifier learns how 
to classify different feature vectors, are usually 
acquired during the training phase. 

EEG-BCI Guided FES 

FES provides muscular contraction and 
produces a functionally useful movement via 
providing electrical stimulation for muscles 
deprived of nervous control (Liberson, 
Holmquest, Scot, & Dow, 1961). It has been 
found that this method enhances post-stroke 
motor recovery (Kralj, Aˇmović, & Stani, 
1993), reduces spasticity (Alfieri, 1981), 
strengthen muscles, and increases the range of 
motion of affected joints (Baker, Yeh, Wilson, & 
Waters, 1979). FES has been found to be most 
effective when combined with MI (Reynolds, 
Osuagwu, & Vuckovic, 2015). Such combination 
can lead to an increase in neuroplasticity, which 
in turn, improves motor learning (Celnik & 
Cohen, 2004; McDonnell & Ridding, 2006). 
Mental imagination of movement can be 
detected using a BCI system, and, if detected, 
in combination with FES, can provide a solid 
means to influence brain plasticity processes 
that could induce recovery of normal motor 
functions. 

 
 
Table 1: EEG Systems 

EEG System Channels Electrodes Connection Portability Cap Cost 
G.tec® Medical 
Engineering 
g.USBamp & 
g.GAMMAbox 

16 Wet/gel Wired No Fabric ~ $30,000 

Emotive Inc. 
EPOC+ 14 Saline 

soaked felt Wireless Yes Headset $799 
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pads 

OpenBCI 8-16 Dry wireless Yes 3D 
printable ~ $1,300 

In EEG-BCI-FES application, imagination of 
a particular movement is the task for which the 
features need to be extracted and then 
classified to translate the intention of 
movement to trigger electrical stimulation. 
Electrodes are placed on and around the motor 
cortex area to detect sensorimotor rhythms 
from both hemispheres.  

Features to be extracted from the raw EEG 
signal are band powers of frequencies 
associated with MI from motor cortex, which 
are typically in µ and β rhythms (Pfurtscheller & 
Neuper, 2001). The BCI system learns which 
frequencies are dominant when the individual is 
imagining a particular movement (e.g. right/left 
hand movement). Then the system trains itself 
to recognize those features and classify them, 
and then sends an activation command to the 
FES system to stimulate the corresponding 
muscles. 

 
Figure 4: OpenBCI 

DISCUSSION 

With the advances in technology over the 
past decade, brain-computer interface (BCI) 
stands as a promising technology with the 
potential to restore lost motor functions in 
patients with devastating neurological 
conditions, such as stroke, and empower PWD 
to regain control of their bodies and 
environment. The development of cost-effective 
EEG systems can have a great impact on the 
adoption of BCI technology for improving the 

quality of life and restoring function for people 
with severe motor disabilities. These systems 
may open new venues of research and 
development around PWD in their natural 
environments. However, further research is 
required in order to validate  

 
Figure 5: EEG-BCI-FES System 

the efficacy and the quality of the acquired EEG 
data, from the newly developed cost-effective 
EEG systems. Advancements in research and 
adoption of BCI systems in the rehabilitation 
field is contingent on decreasing the overall 
cost of the system to less than 500$, producing 
a system that does not require therapists to 
have intensive technical backgrounds, providing 
sufficient professional training modules, 
conducting further research to document 
evidence for use and reimbursement. Both 
rehabilitation engineers and therapists have 
their responsibilities to fulfill these needs. 
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