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INTRODUCTION 

Approximately 3.3 million Americans over the age of 15 use wheelchairs daily (Census, 2010). 
Wheelchair users rely heavily on their upper extremities to complete common but essential activities of daily living 
such as getting in and out of bed, transferring to a toilet or a shower, and transferring in and out of a car. Manual 
wheelchair users will perform on average 14 to 18 transfers a day, which are extremely physically demanding and 
can lead to upper extremity pain and injury (Hogaboom, Worobey, & Boninger, 2016; Tsai, Hogaboom, Boninger, 
& Koontz, 2014). Research shows that the prevalence of upper extremity pain, specifically shoulder pain, in 
wheelchair users ranges between 31 and 73 percent (Cooper R, 1998). Unfortunately, shoulder pain leads to 
decreased quality of life and participation in physical activity (Gutierrez et al., 2007). The use of good transfer 
mechanics to avoid pain and injury is important for wheelchair users when performing transfers.  

The Transfer Assessment Instrument (TAI) is a tool used by clinicians and therapists to assess transfer 
quality and identify problems in wheelchair transfers which can cause increased forces on upper extremity joints 
(Tsai, Rice, Hoelmer, Boninger, & Koontz, 2013) (Tsai et al., 2014). The TAI is a 2 part assessment, with the first 
part consisting of specific transfer issues rated on a “yes”, “no”, or “not applicable” scale. Part 2 consists of global 
performance of transfer quality, techniques and indication of assistance, which is scored from 0 to 4. The final TAI 
score is the average of both part 1 and part 2 from 0 to 10 (Koontz, Tsai, Hogaboom, & Boninger, 2016), where a 
10 is perfect transfer technique and a 0 is very poor transfer technique. Some items of the TAI, particularly those 
related to the body mechanics can be subjective, and are open to different interpertations. 

The Microsoft Kinect is a motion sensing device originally designed for use with video game systems. The 
Kinect sensor has been shown to be accurate at sensing joint centers and has found applications in various 
clinical and research settings (Xu, McGorry, Chou, Lin, & Chang, 2015).  In preliminary work, we developed 
algorithms that combined selected biomechanical variables meaured by the Kinect and manual measurements of 
the body’s segments lengths to discern proper from improper technique (Lin Wei, 2017).  The approach used 
Kinect’s developers software module, a separate post-processing module (Matlab and Mathmatica), and a 
statistical analysis module (SPSS).  The requirement of having to take physical measurements of the person’s 
dimensions and the use of multiple applications to obtain results makes it an impractical solution to implement in a 
clinical setting.   

The aim of this study was to 1) create an integrated software program that can automate the TAI scoring 
using the Kinect in real-time, 2) evaluate the performance of the program in predicting the TAI items scores 
correctly with manually-measured body measurements, and 3) evalute the performance of the program to predict 
TAI scores when Kinect-measured body measurements are used. 
METHODS 

For this study we focused our initial efforts on creating a program that could autoscore TAI part 1 items 
1,2,3,6, and 7 (Tsai et al., 2013).  These items address appropriate body/wheelchair setup for the transfer.  
Software code was written using C#, a general purpose object-oriented programming language. The Kinect 2 
sensor collects position data of 25 joint centers in X, Y, and Z dimensions in 30 ms interval frames. This raw data 
is automatically saved as a .csv (comma seperated value) file, with 75 columns of position data, in rows indexed 
by time in milliseconds, also refered to as frames.  Two additional columns of data include time stamps and 
elapsed time in milliseconds. These data are read into a module that calculates the information important to the 
transfer and subject. The information can be broken down into 3 categories, joint movements, body segment 
measurements, and TAI scoring. The joint movement variables of interest, which included linear and angular 
displacements of the trunk, hip, knees, ankles, and feet, were calculated from the raw Kinect data during both the 
setup and lifting phases of the transfer. The phases of transfer (e.g. the frames that defined their start and end 
times) were determined manually and input from a separate text file.  

Two models for TAI scoring were developed for each TAI item using data (n=60+ wheelchair users) 
collected from previous work.  One version of model used the body segment measurements gathered with a tape 
measure (Model 1), and the other one used the Kinect measured body segments (Model 2). Kinect measured 
joint movement variables (e.g. displacements, ranges of motion, etc.) were included in both models along with the 
segment lengths to predict the TAI result. Separate models were tested because the manual distance 
measurements and Kinect-calculated distances are expected to vary slightly.  The Kinect measures a point to 
point distance from the center of each joint, while the manual measurements are from bone landmark to bone 
landmark. Discriminant function equations used to predict the TAI scores were modeled in SPSS 25 (SPSS Inc., 
Chicago, IL). The resulting model equations were implemented into the code.  The model equations multiply 



calculated coefficients by each body segment and movement variable, and are added together.  Using a threshold 
value defined in the previous work, the model result for a TAI item was classified by the code as either ‘proper’ or 
‘improper’  and assigned a 1 or 0 respectively.  
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑥𝑥1 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥3 + ⋯+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (1) 
, where a, b, c are coefficients defined by the previous modeling process; X1, X2, X3 are predicted variables 
(displacement of the joint centers, joint angles, etc.) calculated from the Kinect position data. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  
𝑒𝑒(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

1 + 𝑒𝑒(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 
, where e is Euler's number, e = 2.71828  (2) 
For example, for TAI item two the cut value is 0.5. If the predicted value is greater than 0.5, the trial would be 
assigined into the proper (1) group. If the predicted value is lower than 0.5, the trial would be assigned into the 
improper (0) group. 

One test subject voluntarily participated in the study (male, age 33, height = 177cm; weight = 90.72kg). 
First, anthropometric data was manually collected from the subject, i.e. height, weight, upper arm, lower arm and 
leg lengths. Then a static hold trial was performed by the subject for 5 seconds, with arms extended perpendicular 
to the trunk. The static hold trial was used to calculate body segment measurents from Kinect automatically within 
the program.  Manual measurements were uploaded into the program from a .csv file. 

 Next, the subject conducted 1 proper transfer, followed by 5 improper transfers for each item of the TAI 
part 1 items 1,2,3,6, and 7. For item 1, the wheelchair was positioned farther than 3 inches from the transfer 
bench. For item 2, the wheelchair was positioned parallel to the bench, and not within the 20-45 degree range of a 
correct transfer. For item 3, the subject transferred directly over the rear wheel of the wheelchair. For item 6, the 
subject did not place his feet on the ground before transferring, and for item 7, the subject did not move forward in 
the seat, and transferred directly from the back of the wheelchair seat.  Each type of transfer was performed three 
times for a total of 18 transfer trials that were available for testing the new software.  
Data Analysis 
  The 18 transfer files containing the raw Kinect position data were randomized and analyzed by a 
researcher who was blinded to the type of transfer performed (e.g. proper or improper). Descriptive statistics 
(means and standard deviations) were computed for the body segment variables measured manually and with the 
Kinect. Autoscoring performance for each model was evaluated using standard binary classification statistics (e.g. 
accuracy, specification, specificity, etc.)  
RESULTS 

The output of the program was .csv files: predicted TAI scores (Figure 1), calculated body segment distances, 
and calculated joint movements (Figure 2). The outputs were compared to manually measured joint distances, 
manually calculated joint movements, and TAI items scores for the actual type of transfer performed (e.g. proper 
(‘1’) or improper (‘0’)). Each transfer assessment with the new program took on average 500 ms to calculate, 
which is a huge improvement over performing manual measurements and running several separate software 
programs (5-10 minutes).    

 

 
Figure 1: Screen shot of the TAI scoring output 
 



 
Figure 2: A screen shot of the joint movement output: displacement of the joint centers calculated by the 
Kinect (units: mm). 
 
As expected, the Kinect measured body segment lengths differed from the manual measured lengths (Table 1). 
While differences in magnitudes were found the variance within both methods was low.   

 
Table 1:  Manual segment lengths compared to Kinect measured segment lengths (units: cm) 

Segment 
 

Manually 
measured 
segment 
lengths 

Mean(std) 

Kinect measured 
segment lengths 

Mean(std) 

Right Upper Arm 
Length 35.5 (3.3) 24.0 (2.1) 

Left Upper Arm 
Length 35.9 (3.1) 24.3 (2.1) 

Right Forearm 
Length 26.4 (2.6) 24.7 (2.3) 

Left Forearm 
Length 26.6 (1.8) 24.3 (2.6) 

Right Thigh 
Length 45.6 (4.3) 39.3 (5.5) 

Left Thigh 
Length 45.9 (4.9) 40.3 (5.7) 

Right Leg Length 41.1 (6.3) 38.4 (5.5) 
Left Leg Length 42.3 (4.8) 39.4 (6.0) 

Right Foot 
Length 20.7 (2.1) 13.0 (1.9) 

Left Foot Length 20.6 (1.9) 12.9 (1.9) 

Trunk Length 54.7 (7.9) 45.9 (6.2) 

 
Model 2 using the Kinect measured segment lengths was slightly more accurate overall than Model 1 (Tables 

2 and 3).  We found both models to have high specificity (≥81%) for all items except Item 6 for Model 2. Item 6 
had the lowest specificity (29%) (Table 3), this is most likely due to the Kinect having difficulty sensing the lower 
extremities while seated in a wheelchair.   Both models also had higher positive predictive values (PPV) than 
negative predictive values (NPV) (Table 2).  

 
Table 2:  Model 1 Using Manually Measured Segment Lengths; PPV and NPV: Positive and Negative 
predictive values 
Item Accuracy Sensitivity Specificity PPV NPV 

1 .70 .64 0.92 0.96 0.44 
2 .95 0.97 0.88 0.96 0.89 
3 .65 0.58 0.88 0.94 0.39 
6 .62 0.46 0.88 0.87 0.49 
7 .73 0.72 0.81 0.87 0.36 

 
Table 3:  Model 2 Using Kinect Measured Segment Lengths 
Item Accuracy Sensitivity Specificity PPV NPV 



1 0.84 0.81 0.93 0.97 0.64 
2 0.75 0.66 1.00 1.00 0.51 
3 0.87 0.88 0.82 0.94 0.67 
6 0.72 0.93 0.29 0.73 0.67 
7 0.86 0.86 0.86 0.98 0.49 

 
DISCUSSION 

The results show that it is possible to automate several steps in determining a TAI score with one program. 
The application combines the analysis normally completed by post-processing modules (Matlab and Mathmatica) 
and a statistical analysis module (SPSS) into a one-step program making it a more practical solution to implement 
in a clinical setting.  The classification results were promising for replacing manually measured body lengths with 
Kinect measured ones which would further speed up performance and reduce burden on the operators and end 
users.  The code currently requires knowledge of when the setup phase of the transfer ends and the lift part of the 
transfer begins. This is determined off-line using manually methods and read into the code as a separate file 
which would not be feasible for clinical use. We are currently developing an algorithm to automatically differentiate 
the phases of a transfer using only the Kinect data which would make the runtime of the program even faster and 
practical for the clinic.   

Our results demonstrate that a refined method is needed for improving the specificity of Item 6.  If this can be 
achieved, the Kinect model may be an effective tool for assessment of proper transfer setup. The item 6 checks 
that the subject places his feet in a stable position (on the floor if possible) before the transfer. The program used 
the displacement of the subject’s toe, feet, and knee joint center before the transfer to evaluate this item. Ideally if 
the subject placed the feet on the floor, the displacement of the lower extremities joints should be larger than if the 
subject kept his feet on the wheelchair pedals. However, the seated position and the wheelchair itself may have 
introduced errors into the sensor readings (a common issue with infrared depth sensors).  Using a more 
advanced depth sensor and/or using another type of sensor (e.g. pressure sensors on the footrests) may help 
resolve the issues with erroneous data.  

For the other four items that were modeled, the model is unlikely to tell a patient they are doing the movement 
correctly when they are actually doing it incorrectly. This ability may be valuable to a clinician because incorrect 
behaviors are not reinforced as though they were correct (Lin Wei, 2017). In clinical practice, it is much more 
detrimental to diagnose a false-positive TAI score (e.g. saying that the patient is doing it right when they are 
actually doing it wrong) than to diagnose a false-negative TAI score (e.g. saying that the patient is wrong when 
they are doing it right). Thus, we aimed to achieve high specificity and PPV in this study, which will minimize the 
false-positive TAI scores.  

To further improve TAI scoring accuracy, a machine learning algorithm is being developed to continually 
adjust and improve the TAI scoring equations. These new algorithms will replace the existing discriminant 
functions and allow for a more robust clinical tool.  
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