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INTRODUCTION 

Gait disorders and falls rank amongst the most frequent functional disorders 
of elderly patients. While the ability to locomote feels natural to healthy 
people, walking challenges many persons with advanced age. Changes 
triggered by the physiological ageing process, like declining muscular 
strength, degenerating visual perception, and decreasing nerve conduction 
velocity, but also illness-related issues e.g. of the muscular-skeletal system, 
lead to a more or less typical change of the human gait pattern and increase 
the risk of fall. Consequently, gait disorders and falls represent significant 
challenges in geriatric diagnostics and therapy. 

The project ModESt, funded by the German Federal Ministry of Education 
and Research in context of the KMU-innovativ program (2017-2019), is 
dedicated to reduce the risk of fall for elderly people using wheeled walkers. 
Our approach is to monitor gait properties with walker-mounted sensorial 
equipment, and give valuable feedback to the user about insecure gait 
properties to be corrected. A long-term goal of the project is to provide a 
diagnostic tool for physicians and physio therapists with which the 
assessment of current procedures, such as the Timed up and go Test, can 
be objectified. In this context, the publication at hand addresses the 
research question of whether a robust classification of clinically significant 
gait properties, e.g. stride-variability and -length, is possible by solely 
evaluating a small number of distance measurements sensed by an 
instrumented walker. In the following we do so by stating related works, 
presenting the technical methods used, and informing about an observational 
clinical study that evaluates the approach presented. 

Related Work 

Today's gait analysis systems assess time-series of measurements, and can be differentiated w.r.t. a broad range 
of sensorial equipment applied. Common approaches use retroreflective markers in combination with multi-
camera setups to track tagged joints and limbs in 3D [1-3], measure dynamic electromyography patterns of 
activated muscles during gait [4,5], monitor joint angles and acceleration data by body-mounted inertial 
measurement units [6,7], or analyze foot pressure by the help of sensor pads within shoes or on the ground. 
These approaches require extensive preparation of the test person or the environment, rendering test sessions 
outside the laboratory almost impossible. With these necessities in mind, the instrumentation of walking aides 
such as wheeled walkers is appealing. It does not only render the location-independent monitoring of a person's 
gait possible, but it also allows for the observation of risk of fall factors during the daily use of wheeled walkers. 

Ballesteros et al. have presented the walker platform i-Walker [8]. The system is equipped with pressure-sensitive 
handlebars and odometry-enabled back-wheels. Using this setup, the authors correlate measurable parameters 
such as step-time and -length as well as stride-time and -length to the Tinetti clinical scale [9]. 

METHODS 

Data Representation and Acquisit ion 

Let a vector of 𝑛 distance measurements taken at time 𝑡 be defined by 𝐷! ∶= 𝑑!!,⋯ ,𝑑!!!! : 𝑛 ∈ ℕ, 𝑡 ∈ ℝ,𝑑!! ∈ ℝ. 
Then we can define a time series of 𝑛×𝑚 distance measurements starting at 𝑡! and ending at 𝑡!!! by the 
matrix 𝐷! ∶= 𝐷!! ,⋱,𝐷!!!! : 𝑡! ∈ 𝑇 ⊂ ℝ, 𝑡! < 𝑡!!!. 𝐷! can not only represent the complete set of measurements 

Figure 1. Person (black) walking at 
a wheeled walker (blue), while 
being observed by two depth 
cameras (green viewing frusta 𝒗𝒇𝟎 
and 𝒗𝒇𝟏). The depth measurements 
𝒅𝟎 ,⋯ ,𝒅𝟕 (red) are sampled by 
virtual distance sensors. 



 2 

taken during data acquisition, but also time-continuous subsets. In particular, we are interested in measurement 
intervals that compose a single gait cycle, since this is the atomic unit that we want to classify. In the long term, it 
is planned to capture 𝐷! by several small-scale and low-cost infrared proximity sensors. To be more flexible 
during the development phase, we currently use two Asus Xtion Pro depth cameras, mounted at the walker’s front 
(cf. Figure 1), for sensing the distance to the user's body. We sample from the depth camera's data so-called 
virtual distance sensors (VDS), i.e. we intersect single measurement rays with the raw depth images. Note that 
the depth measurements of both cameras are transformed into a common frame of reference before the sampling 
step (cf. [10]). This allows us to define the pose of the VDS in dependence of the person's body height.  

Gait Cycle Extraction and Fi l ter ing 

The human gait cycle is defined by the period of time in-between the starting points of two consecutive ground 
contacts of the same foot. Since a single measurement 𝐷! doesn't provide us any direct information about whether 
or not a foot touches the ground, we get by with partitioning the periodic movement pattern at points in time where 
one of the distance measurements 𝑑!, that intersects with the leg closest to the ground, is maximal (e.g. 𝑑! in 
Figure 1).  
Having split the stream 𝐷! at two consecutive minima of 𝑑!, e.g. at 𝑡 = 𝑗 and 𝑡 = 𝑘, we can extract a new gait 
cycle candidate 𝐷!, with 𝑇 = 𝑗,⋯ , 𝑘 ⊂ ℝ for subsequent processing. As not every single gait cycle is suited for 
being fed into the classification knowledge base, or being matched against it, we continue by filtering out gait 
cycle candidates that show data from unusual walking behavior, such as turning on the spot or backwards 
movements. We do so as follows: let  
𝐺𝐶𝐶! ∶= 𝐷!! :𝑇! ⊂ 𝑇 ⊂ ℝ,𝑇! ∩ 𝑇!!! = ∅                                                                                 (1) 
be the vector of potential gait cycle candidates extracted from recently recorded distance measurements. Then we 
can filter out gait cycle candidates that are too long or short over time, compared to the average duration of gait 
cycle candidates. In addition, we remove gait cycle candidates that show value ranges of 𝑑! differing too much 
from the average value range of 𝑑! over all gait cycle candidates. This yields the following definition of detected 
gait cycles: 

𝐺𝐶! ∶= 𝐷!! :𝐷!! ∈ 𝐺𝐶𝐶! , 1 − 𝜀! <
!!

!!! !""
< 1 + 𝜀!, 1 − 𝜀! <

!"! !!!
!!"! !""

< 1 + 𝜀!                                    (2) 

In (2), 𝑇!  denotes the duration of 𝐷!!, 𝜙Δ! 𝐺𝐶𝐶  denotes the average gait cycle duration over all gait cycle 
candidates in 𝐺𝐶𝐶, 𝑣𝑟! 𝐷!!  denotes the value range of the 𝑗!! distance measurement of 𝐷!!, and 𝜙𝑣𝑟! 𝐺𝐶𝐶  
denotes the average value range of the 𝑗!! distance measurement over all gait cycle candidates in 𝐺𝐶𝐶. For the 
current implementation, we chose 𝜀! = 0.25 for limiting the duration deviation of gait cycles, and 𝜀! = 0.5 for 
filtering out gait cycle candidates with deviating value range.  

Classif ication of Gait Cycle Descript ions 

As gait cycles can vary in their duration, all gait cycles in 𝐺𝐶! are initially resampled, i.e. linearly interpolated over 
time. In our current implementation, we compute 30 interpolated distance values per gait cycle for each VDS. In 
the following we indicate the normalized length of time of gait cycles by replacing the subscript 𝑇 by 𝑇, e.g. we 
write 𝐺𝐶! for a set of gait cycles with normalized length over time.  

The core task of the system presented in this paper is now to classify a single gait cycle description 𝐷! w.r.t. a 
discrete-valued gait cycle property 𝑃. Let for example 𝑃!! 𝐷! ∈ 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑟𝑒𝑑𝑢𝑐𝑒𝑑  be the stride height of a 
person's gait cycle that can be assessed by a physiotherapist as being normal or reduced. During the training 
phase of the classification algorithm, gait cycles out of the training dataset are clustered according to their ground 
truth labels. A cluster's centroid, along with the covariance matrix over the corresponding training samples, finally 
makes up an entry into the knowledge database. For our stride height example, let 𝐺𝐶!

!" 𝑠ℎ. 𝑛𝑜𝑟𝑚  now be the 
training data that describe gait cycles with a normal stride height. Please recall that normalized gait cycles are 
composed of 𝑛 VDS, and 𝑚 readings over time per VDS. We can then formulate the covariance matrix as 

𝐶 𝑠ℎ. 𝑛𝑜𝑟𝑚 =
𝑐 𝑋!,𝑋! ⋯ 𝑐 𝑋!,𝑋!"

⋮ ⋱ ⋮
𝑐 𝑋!",𝑋! ⋯ 𝑐 𝑋!",𝑋!"

, 𝑐 𝑋! ,𝑋! =
!!!!! !!!!!
!"!

!" !!.!"#$
             (3) 

with 𝑋!"!! being the 𝑗!! reading of the 𝑖!! VDS, interpreted as random variable over all gait cycles in 
𝐺𝐶!

!" 𝑠ℎ. 𝑛𝑜𝑟𝑚 , 𝑐 𝑋! ,𝑋!  being the single (co)variance terms, and 𝐺𝐶!
!" 𝑠ℎ. 𝑛𝑜𝑟𝑚  being the number of gait 

cycles with normal stride height in the training data set. After having computed the centroids and covariance 
matrices of all classes 𝑝 for a given gait cycle property 𝑃, we compute the most similar class of a given gait cycle 
description to test. We do so by minimizing the Mahalanobis distance 𝑑 [11] over all 𝑝 ∈ 𝑃 as follows:  
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argmin! 𝑑 𝐷!
!,𝐷! = argmin! 𝐷!

! − 𝐷!
!
𝐶!! 𝐷!

! − 𝐷!                                                     
(4) 
In (4), 𝐷!

! describes the centroid of a given class 𝑝 for a given gait property, 𝐷! describes the gait cycle 
description to be tested, and 𝐶!! describes the inverted covariance matrix belonging to 𝐷!

!. For all vector- and 
matrix-related operations, including the computation of the inverse of 𝐶, we use the C++ template library Eigen. 

Study Design and Procedures 

The main experimental evaluation of the proposed classification algorithm took place at the Bremen Nord Hospital 
- Clinic for Geriatrics and early Rehabilitation. Here, 26 stationaries and out patients aging from 47 to 93 years 
(Ø74.3) underwent an observational clinical study that had been approved by the responsible ethical panel 
beforehand. The study design included initial clarification for the patients about the goal of the study, followed by 
the patients' signature under a consent that allowed us for the usage of the anonymized data collected. In the 
following, the undisclosed part of a case report form was filled out by a physician for every patient. These 
anonymized documents do not allow somebody to draw conclusions about the identity of the patients under 
scope. Beside personal information, this part included medical diagnoses, i.e. the reasons for the patients’ 
hospital stay was not transmitted to the study team. 

In the following, each patient was asked to walk up and down an approx. 12m long hallway in the 
physiotherapeutic department for three times, while being supported by the instrumented walker. In between each 
trial the subjects had sufficient time for relaxation. During the three trials, physiotherapists and a physician 
observed the gait properties of the subject and noted their observations afterwards in the second part of the case 
report form. This open document includes a unique identifier for each patient that connects to the undisclosed part 
of the case report form. Table 1 lists all 14 gait properties and their value ranges, as assessed by the medical 
staff. In parallel to the visual examination of the patients, two Asus Xtion Pro depth cameras, mounted at the 
walker and connected to a Raspberry 3, recorded depth information of each trial. 

After the data acquisition sessions, depth information log files were separated into training data and test data log 
files, i.e. we used the log files of the first two trials of each participant as the training data set, and the third one as 
the test data set. Gait cycles were then extracted and filtered for each log file. According to the case report forms, 
gait cycles from the training data sets that described the same class of a gait cycle property were then bundled 
and used to compute the mean gait cycle description (centroid) and inverted covariance matrix for that class. In 
the following test phase, we computed the Mahalanobis distance to the classes of each gait cycle property for 
each filtered gait cycle from the participants’ third trial-log file. 

ANALYSIS AND DISCUSSION 
Table 1. Ground truth distr ibution observed by cl inical staff during training of the classif ication algorithm 

Gait Property Class 1 Class 2 Class 3 Class 4 Class 5 
2 gait pattern (2gp) physiological 28.6% pathological 71.4% ― ― ― 
5 gait pattern (5gp) physiological 28.6% antalgic 20.4% protective 30.6% atactic 8.2% paretic 12.2% 
position to walker (ptw) centered 51.0% left deviating 40.8% right dev. 8.2% ― ― 
distance to walker (dtw) normal 57.1% increased 42.9% ― ― ― 
hip flection left (hfl) 0°-10° 59.2% 10°-30° 38.8% >30° 2.0% ― ― 
hip flection right (hfr) 0°-10° 44.9% 10°-30° 44.9% >30° 10.2% ― ― 
Knee flection left (kfl) <0° 12.8% 0°-10° 72.3% 10°-30° 10.6% >30° 4.3% ― 
knee flection right (kfr) <0° 12.8% 0°-10° 63.8% 10°-30° 23.4% ― ― 
torso flection (tf) upright 36.7% anteflexed 59.2% retroflexed 4.1% ― ― 
stride symmetry (ss) uniform 46.9% left deviating 24.5% right dev. 28.6% ― ― 
stride width (sw) normal 69.4% narrow 16.3% broad 14.3% ― ― 
stride variability (sv) regular 61.2% slightly incr. 20.4% irregular 18.4% ― ― 
stride length (sl) normal 61.2% reduced 34.7% increased 4.1% ― ― 
stride height (sh) normal  65.3% reduced 34.7% ― ― ― 

 
By comparing the most similar class of a tested gait cycle description with the ground truth taken from the case 
report forms, we acquired the basic data for setting up the statistics over correct and false classifications. 
Statistics such as the minimal, maximal, and mean classification rates, as well as the standard deviation of 
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classification rates (for a given gait cycle property) are given in Figure 2. In addition to the classification rates of 
single gait properties, we have compared the cadence rates (number of gait cycles per minute) for each 
participant, i.e. as measured by hand during data acquisition (ground-truth) vs. one minute divided by the mean 
length of time of extracted and filtered gait cycles of subjects as computed by the system.  
Results show best classification rates (cr) for two-valued gait properties such as distance to walker (99.4%), and 
the meta-property 2 gait pattern (99.2%), which discriminates between physiological and pathological gait. With 
94.2%, position to walker shows the worst cr. The average cr over all gait properties is given by 96.9%. The mean 
cadence rate measurement error is given by 1.86% (𝜎: 7.06%, max error: 18.2%) over all subjects. 

CONCLUSIONS 

This paper presented an add-on system 
for wheeled walkers that allows for the 
online classification of the user’s gait 
cycles w.r.t. 14 gait properties relevant in 
assessing gait safety. Now that an initial 
observational study has proven robust 
classification rates, ongoing and future 
work develops in three directions. On the 
first hand we are developing a suitable 
user interface that communicates 
problematic postures and gait properties 
to the user. In parallel, the depth cameras 
used here are replaced by small-sized 
Time-of-Flight laser-ranging sensors 
allowing for a seamless integration into the 
walker frame. With the final walker setup 
available, we will conduct an interventional 
study that is dedicated to the question of 
whether recognized and communicated gait problems can improve patients’ gait in sense of correct and safe gait. 
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