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INTRODUCTION 

Wheelchair users as a group are considered to be sedentary and among the least fit individuals. [1] It is well 
known that sedentary lifestyle adversely impacts health. [2-4] To promote health, research has focused on 
physical exercise interventions to increase physical activity (PA) or decrease sedentary time throughout the day. 
[5] There are also multiple PA guidelines that recommend the intensity and duration of PA for people with spinal 
cord injury (SCI) who often rely on wheelchairs for mobility. [6] Traditionally, self-report surveys are often used as 
surveillance tools to track habitual PA in the community, but they are limited by burdens of recall, lack of 
responses, and inaccuracy. [7] With the proliferation and cost reduction of wearable devices, accelerometer-
based sensors are increasingly used for users to track their own PA behaviors and for researchers to examine 
the association of PA behaviors and health indicators. 

Much research in ambulatory population has examined the ability of accelerometer-based sensors such as 
ActiGraph monitors (ActiGraph, Inc., FL, USA) to estimate PA intensity. [8-10] There are well-recognized cut-off 
points in accelerometer counts for ambulatory population to estimate their time spent in sedentary, lightweight, 
and moderate-to-vigorous intensities of PA (MVPA) over any period of time. [9] The accuracy of such estimation 
is often dependent on the population, sensor placement, and activities that were used to derive the cut-off 
points. [2,9,11] Thus, these cut-off points cannot be simply applied to manual wheelchair users (MWUs) because 
they were derived with sensors worn at hip/waist to capture primarily lower limb movements such as walking 
and running.  

Research involving MWUs often asks participants to wear the sensors around the wrist to capture their upper 
limb movements for wheelchair propulsion and other activities of daily living (ADLs). [2,11] Studies have shown 
that accelerometer counts from ActiGraph sensors correlated with self-reported activity intensity by wheelchair 
users, and with energy expenditure during wheelchair propulsion activities. [2,4,11] Only one research study 
attempted to derive cut-off points in accelerometer counts for intensity estimation for MWUs, and showed the 
cut-off points based on wheelchair propulsion trials on a computer-controlled treadmill. [11] In this paper, we 
examine the ability of ActiGraph GT9X Link (ActiGraph, Inc., FL, USA) to estimate activity intensity for MWUs 
based on a variety of lifestyle activities and exercises.  

METHODS 

This study was approved by the US Department of Veterans Affairs Central Institutional Review Board. 
Individuals were invited to participate if they 1) had a spinal cord injury (SCI), 2) were between 18 and 65 years, 
3) used a manual wheelchair as their primary means of mobility (≥40 hours/week), 4) were at least one-year post 
injury, and 5) were medically stable.  

After informed consent, participants completed a demographics questionnaire. Their height and weight were 
measured. Participants rested in a supine position for 20 minutes and then performed a series of ADLs in 
random order. Activities included: resting while sitting in a wheelchair; propulsion at self-selected slow, normal, 
and fast pace; propulsion on a slope; watching TV; working on a computer; playing basketball; sweeping the 
floor; loading and unloading a dishwasher; weight lifting; TheraBand exercises; arm ergometry at a self-selected 
slow and fast pace; folding laundry; and being pushed in their wheelchair. Participants performed each activity 
for 10 minutes, followed by a 3-minute break. All activities were video recorded.  

The COSMED K4b2 (COSMED, srl., Rome, Italy) portable metabolic cart was used to measure breath-by-breath 
oxygen consumption (VO2) during activities. Data from the K4b2 was downloaded using its software. For each 
activity, VO2 values (ml/kg/min) were averaged for each minute and divided by the resting metabolic equivalent 
of 2.7 ml/kg/min to obtain the Metabolic Equivalent of Task (MET) for the minute, which served as the criterion 
measure of PA intensity. [12] MET values ≤ 1.5 are classified as sedentary behavior, 1.5-3 METs are classified as 
light intensity, and ≥ 3 METs are classified as moderate to vigorous intensity. The ActiGraph GT9X Link sensor 
worn at the dominant wrist was used to track PA as shown in Figure 1. It is a tri-axial accelerometer whose 
vector magnitude (VM) of acceleration is converted to activity counts called VM counts using the company’s 



proprietary software. VM count data from the ActiGraph GT9X Link was downloaded in 60-sec epochs using the 
ActiLife software version v6.11.9. Both the K4b2 and ActiGraph Link were calibrated following standard 
procedures and time-synchronized. [13,14]  

Figure 1: ActiGraph Link GT9X sensor worn on the 
dominant wrist 

K4b2 and ActiGraph Link data during breaks were 
identified from video recordings and removed from the 
analysis. To obtain cut-off points for intensity estimation, 
an iterative process was utilized. For each iteration, we 
randomly divided the participants into two groups with 
85% of participants in the model development group and 
15% in the accuracy testing group. For the model 
development group, only steady-state data was used to 
build the prediction model. Steady-state was defined as 
less than 10% difference in the amount of oxygen (VO2 ) 
inhaled and carbon dioxide (VCO2) exhaled within a 

minute for four consecutive minutes.  Steady-state data were then averaged for each activity for each 
participant. The averaged VM counts for different activities were correlated with criterion MET values. A linear 
regression equation was fit to predict MET values from the VM counts and the cut-off points for sedentary, light, 
and MVPA intensities were determined. The R2 statistic and root mean square error (RMSE) were obtained to 
evaluate the model. The derived cut-off points were then applied to participants in the accuracy testing group. 
The estimated METs were compared to the criterion measure, and the total number and percentage of 
misclassified minutes were then calculated. This bootstrapping-alike process was iterated until all possible 
combinations of participants were tried in the model development group. The final equation to predict METs was 
formulated by averaging all iterations.  R2 statistic and RMSE were also calculated by averaging values over all 
iterations.  

RESULTS 

A total of 16 participants were recruited and completed the study.  A total of 120 iterations were performed to 
accommodate all possible combinations of participants in the model development group (n = 14) and accuracy 
testing group (n = 2). Out of the total 16 participants, two had an injury level at C6 or above (both with 
incomplete injury), and the remaining were below T1 (11 with complete injury while 3 did not report). They had an 
average age of 42± 14 years (range: 22-62 years), average weight of 203± 47 pounds (range: 130-302 pounds) 
and an average height of 69± 3 inches (range: 65-73 inches).  

A strong, positive correlation (r=0.77) was observed between the VM counts per minute (CPM) and the MET 
values. The linear equation to predict MET was obtained as:  

 MET = 1.13+(0.00015) *CPM 

The cut-off points between sedentary and light intensity 
was 2,433 CPM, and between light and moderate 
intensity was 12,467 CPM. The average R2 statistic for all 
iterated models was 0.66 (p<0.001), indicating that 66% 
of the variance in the METs was explained by the VM 
count alone. The RMSE was 0.67. An average accuracy 
of 81% (with standard deviation of 5.8% across 120 
iterations) was seen for classifying activities into different 
intensities. The total number and percent of misclassified 
minutes over 120 iterations is shown in the contingency 
table in Figure 2.   

Figure 2: Contingency table showing total number of minutes (and percentages) spent in sedentary, light 
and MVPA intensities by all participants. 

DISCUSSION 

This ongoing study derived cut-off points in VM counts for MWUs to estimate PA intensity based on a range of 
ADLs. It was found that the wrist-worn ActiGraph sensor was able to quantify sedentary behavior with a high 



accuracy of 93.4% as shown in Figure 2. A growing body of evidence in the general population indicates that 
sedentary behavior is associated with increased morbidity—particularly cardiovascular and diabetic—and 
mortality, independent of PA. [5,15] However, there is a lack of knowledge and research on sedentary behaviors 
in MWUs. [5] The preliminary findings of this study showed that the ActiGraph sensor has the potential to track 
sedentary behaviors (e.g., total time, number of sedentary bouts, and number of breaks etc.) in MWUs and 
support future research that examines the adverse health effect of sedentary lifestyles and the effectiveness of 
interventions aiming at breaking sedentary time in this population.  

Our results also showed the ActiGraph sensor was able to classify light and moderate-to-vigorous activity 
intensities with reasonable accuracies. About 80% of the lightweight activities were correctly classified, while 
some (15.7%) were wrongly classified as MVPA. For example, sweeping floors as a lightweight activity was 
wrongly classified into moderate intensity, because it involved a great amount of wrist movements, but not 
physical exertion. About 66% of MVPA minutes were correctly classified, while the rest were wrongly classified 
into light-weight category. Most of the misclassifications were from resistance-based activities such as 
propulsion up a slope, weight lifting, and TheraBand exercises where the physical exertion was not proportional 
to the upper limb movements. Since ActiGraph sensor only recorded wrist movements, the VM counts were 
relatively low during these high resistance activities, even though participants expended more energy.  

The total minutes of PA tested in this study comprised of 37% of sedentary, 39% of light and 24% of MVPA. 
There were three resistance-based activities which accounted for about 43% of total MVPA minutes. The 
distribution of sedentary, light and MVPA minutes in this protocol may be different from that in the community 
where sedentary behavior typically constitutes the majority of the daily time. Thus, this result from this study 
should be viewed with caution, especially when an individual engages in many resistance-based activities.  

Nonetheless, the study is still ongoing and with more participants tested in the study, we can further refine the 
algorithm and evaluate the generalizability of the derived cut-off points. Previous studies have used 
individualized calibrated heart rate to estimate activity intensity, however, this approach involves additional 
testing procedures and accurate heart rate measurements with chest sensors. [16,17] In addition, heart rate in 
people with SCI are affected by many factors such as injury levels and medications. We have collected the heart 
rate data in this study via a wrist-worn device and a chest-worn device, respectively, and plan to examine the 
extent to which the heart rate information from each device could help improve intensity estimation accuracy 
especially for MVPA in future work. 

CONCLUSIONS 

In this study, cut-off points were derived for sedentary, light, and MVPA activities for MWUs with SCI using 
ActiGraph Link based on a number of ADLs. The preliminary findings showed that the derived cut-off points in 
accelerometer counts could be used to estimate time spent in different intensities of PA in the community for 
this group of individuals with reasonable accuracy. 
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