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ABSTRACT 

Assistive Technology (AT) devices have become an integral part of life for people with disabilities. These devices 
aim at recovering and improving individuals’ functionality to maintain independence and self-sufficiency. This 
paper introduces four different assistive technology devices developed by the Center for Assistive, Rehabilitation 
and Robotics Technologies (CARRT) at the University of South Florida. The devices are designed to assist 
people with physical disabilities, including speech impairment, visual impairment and mobility impairment.  

INTRODUCTION 

The US Census Bureau reports that 54.4 million of U.S. population has disabilities, of which 64% is classified as 
severe disability [1]. Assistive Technology devices are mainly designed for individuals with disabilities to 
overcome their limitations which increase their chances in receiving better education and in enhancing their social 
lives. AT devices are capable of maintaining or increasing the functional capabilities of individuals with disabilities.  
 
CARRT has developed and provided numerous assistive technology devices for people with cognitive disabilities; 
including Autism Spectrum Disorder (ASD) and Traumatic Brain Injury (TBI) using Virtual Reality for Vocational 
Rehabilitation (VR4VR) system [2]. CARRT has also developed solutions, for individuals with physical disabilities, 
such as a 9-DOF wheelchair-mounted robotic arm (WMRA) system [3, 4] and reactive Brain-Computer Interface 
(BCI-P300) control for the robotic arm [5, 6]. Other research has been conducted for grasping and intention 
recognition [7] among other works. 

This paper introduces four different AT devices; Speech Assistance using ANN, Wearable Devices for persons 
with visual impairment, Mobility Assistance using potential field path planning technique, Hands-Free Wheelchair 
control. 

Speech Assistance 

This work focuses on the research related to enabling individuals with speech impairment to use speech-to-text 
software to recognize and dictate their speech. Automatic Speech Recognition (ASR) tends to be a challenging 
problem for researchers because of the wide range of speech variability. Some of the variabilities include different 
accents, pronunciations, speeds, volumes, etc. It is very difficult to train an end-to-end speech recognition model 
on data with speech impediment due to the lack of large enough datasets, and the difficulty of generalizing a 
speech disorder pattern on all users with speech impediments. This work highlights the different techniques used 
in deep learning to achieve ASR and how it can be modified to recognize and dictate speech from individuals with 
speech impediments. 

Wearable Devices 

Assistive technologies have become a significant part of life for the people with visual impairment. Devices of this 
technology help people with visually impairment to avoid collision with objects and people while walking. It is 
important to know the obstacle dimensions, and the distance to the obstacle, to be able to safely navigate from one 
location to another. CARRT has designed stereovision glasses with two high definition cameras to detect and 
identify obstacles in real time. CARRT has also developed a modified version of the wearable haptic belt.  

Mobility Assistance 

Power wheelchair users often face difficulties in maneuvering their wheelchairs to navigate through crowded 
environments, and occasionally bump into objects or people around them. Users usually need to continuously be 
aware of all traffic around them to actively avoid all collisions. Without visual aids, this is challenging since many 
wheelchair users are unable to view everything around them and have a good estimate of how far they are from 
various objects and people. The objective of this project is to create a sensor ring/arc around the base of the 
wheelchair that will detect objects within a certain radius of the chair. Once the obstacles are detected, the 
joystick input motion vector (if pointed towards the obstacle) will be modified to move the chair in a direction that 
won't collide with the obstacle, while moving in the general direction commanded by the user through the joystick. 
The goal is to successfully maneuver around a cluttered environment with less cognitive load on the user. 
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Hands-Free Wheelchair 

The wireless, hand-free mobile wheelchair control is designed for people with disabilities Such that it allows the 
user to maneuver the wheelchair without manipulating the joystick. This device allows the wheelchair bound user 
to control the wheelchair hands-free, and it provides amputees the means to drive the wheelchair using their 
residual limb or other body parts. Successful implementation of the design was completed using a custom-made 
controller that communicates with an android smartphone via Bluetooth which acts as the joystick. The user’s 
upper body parts, such as head, chest, forearm, residual arm or other possible areas, were used to attach the 
android smartphone for controlling the wheelchair. The smartphone’s inbuilt accelerometer sensor was used to 
detect the gravity vector. The generated data was used to calculate pitch and roll motion. These motion values 
were converted into motor commands and sent to the custom wheelchair controller via Bluetooth. The wheelchair 
controller was designed in such a way that it accepts the Bluetooth motor commands from the android phone and 
moves the wheelchair accordingly. To avoid any interference with the actual joystick of the wheelchair, the 
android controller was designed to toggle between both controllers using a switch. 
 
METHODOLOGY AND RESULTS 

Speech Assistance 

The project is split into three consecutive processes; 
ASR to phonetic transcription, edit distance and 
language model. The ASR is the most challenging due 
to the complexity of the neural network architecture and 
the preprocessing involved. We apply Mel-Frequency 
Cepstrum Coefficients (MFCC) to each audio file which 
results in 13 coefficients for each frame. The labels 
(text matching the audio) is converted to phonemes 
using the CMU arpabet phonetic dictionary. The 
Network is trained using the MFCC coefficients as 
inputs and phonemes’ IDs as outputs. The Network 
architecture implemented is a Bidirectional Recurrent 
Deep Neural Network (BRDNN), it consists of 2 (one in 
each direction) LSTM cells (Figure 1) with 100 hidden 
blocks in each direction. The network is made deep by stacking two more layers, which results in a 3 layers 
network in depth. Two fully connected layers were attached to the output of the recurrent network with 128 hidden 
units in each. This architecture resulted in a 38.5% Label Error Rate (LER) on the Test set. 
 
 
Levenshtein edit distance is used to generate potential words from 
phonemes. Edit distance of one means a maximum change of one 
phoneme is allowed, edit distance of two means a change of one or 
two phonemes is allowed when generating the potential words, and 
so on. These changes can be inserts, deletes or replacements. The 
language model uses the potential words to generate sentences 
with the most semantic meaning. The language model is another 
recurrent neural network model trained on full sentences. The 
model outputs the probability of a word occurring after a given word 
or sentence. It is simpler than the main speech recognition model 
because it is not bidirectional and not as deep. The language model 
uses beam search decoding to find the best sentences. The results 
in Figure 2 shows the number of words found per sentence at every 
edit distance. subjects having no accent found significantly more 
words, at an edit distance of one, than subjects with accents. As we increase the edit distance, the 
words/sentence found increase for all the data points. This concludes that it is recommended to increase the edit 
distance for data with speech impediment to acquire better results (given a good language model). 

Wearable Devices 

The wearable haptic belt uses high performance ultrasound sensors and an accelerometer to measure the user’s 
walking speed and other navigation-related information. The acquired data is used by a microcontroller to control 

Figure 2: Words/sentence found at each 
edit distance for different accents 

Figure 1: Long Short-Term Memory (LSTM) Cell; A 
modification for the vanilla Recurrent Neural 

Network design 
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the vibrotactile stimulation. The stereovision feedback system detects different types of obstacles using an object 
recognition algorithm and outputs the best approach to avoid collision using audio feedback. The results gathered 
from these technologies proved that the stereovision system has plethora of advantages over the vibrotactile belt.  

Vibrotactile Belt 

CARRT developed a modified feedback system which was able to 
provide feedback by altering frequency, time lapse, and amplitude of 
vibration to overcome many limitations such as, spatial masking, 
temporal effect, and spatiotemporal interaction. The vibrotactile 
assistive waist belt consists of the following components: 3D printed 
module containing the ultrasonic sensors, circuit board and 
microcontroller, 5 MB1000 LV-MaxSonar ® -EZ0™, Arduino Nano 
Atmega328 microcontroller, ADXL345 3-axis accelerometer, 
DRV2605l motor controller with TCA9548A I2C multiplexer, 4 Haptic 
motors, and 9V battery (see Figure 3) 

Stereovision System 

To perceive depth information, it was necessary to use two cameras separated by a constant distance. These two 
cameras were mounted to the sides of a 3D printed goggle frame as shown in figure 3. The computer interface 
converted the image captured by an individual camera into the depth information which was later converted to a 
point cloud. The motion of the cluster nearest to the user presented the warning about incoming or nearby 
obstacles. To avoid repeated calibrations, the camera attachment was placed as close to the goggle frame bridge 
as possible. The cameras are two 180-degree fisheye lens cameras (model no. ELP-USBFHD01M-L180) 
mounted on the side of the goggles such that they focus to infinity. The Robot Operating System (ROS) 
infrastructure was used for software development. 

Results 

The average time taken by the subjects to complete the given task using the vibrotactile belt was within 8 seconds 
of the time when the stereovision system was used. Based on these results, it can be concluded that both of the 
systems performed closely in terms of basic functionalities of the instruments. Object recognition percentage for 
the vibrotactile belt is 87% and 89% outdoor and indoor, respectively. These numbers are higher than the object 
recognition percentage of the vision system, which are 77% and 83%, respectively, for outdoor and indoor. The 
advantage of using the stereovision system include persons recognition, obstacle recognition, street signs 
recognition, early warning of farther objects and signs.  

Mobility Assistance 

This device uses the potential field algorithm for motion planning [8]. The 
sensors used for this work were LV-MaxSonar-EZ ultrasonic sensors. A 
multiplexer/demultiplexer IC (integrated chip) was used to allow for more 
sensors to work at the same time using one Arduino (microcontroller). A 
custom sensor bracket was designed to hold the sensors at specific angles. 
 
To navigate in the X direction, the goal vector is calculated as:  
 
 X = strength_factor * JoyStick_Distance * cos(Ѳ). 
 where Ѳ is the angle between the goal and the wheelchair 
 position.  
 
A similar equation was developed for the repulsive force due to obstacles. Figure 4 shows the sensor input when 
detecting a 45 degrees wall/obstacle. The results for the assigned tasks were determined by time to completion. 
Each user was timed on how long it took them to complete the task from start to finish. Eight different tasks were 
given and the results show that the assistive wheelchair operation is slightly slower than operating a wheelchair 
without the assistive device, but with a dedicated real-time operating system and some control algorithm 
modifications, the reaction time of the device can be enhanced to allow the users to move at normal wheelchair 
speeds even with the assistive device actively avoiding objects. The assistive control technology is capable of 
keeping the wheelchair away from collisions and increasing the safety of the user while operating the chair. 

Figure 3: Vibrotactile belt and 
Stereovision System 

Figure 4: Sensor input when 
detecting a wall at 45 degrees 
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Hands-Free Wheelchair 

The power wheelchair, which was used for the subject testing, is a Pride Mobility Jazzy 600. The wheelchair’s  

existing motor connections were rerouted through the Android Control System (ACS). With the ACS turned off, 

these signals routed directly through the ACS and were able to return to their previously existing contacts on the 

manufacturer’s control system. The main components of 

the ACS consist of an Android phone, Arduino BT-V06 

micro-controller board, and a Sabertooth 2X60 motor 

controller. Figure 5 shows the Android phone on a hat for 

head control, and the custom 

controller on the back of the 

wheelchair seat. 

The android phone was placed in 

different configurations to test for 

the best attachment method. The 

results show that users were able 

to avoid obstacles more efficiently 

when using the joystick (See 

figure 6); however, users were 

able to do rotation tasks more 

efficiently when using the “Android 

hand held” control method. 
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Figure 5: Hands-
Free chair 

Figure 6: A Time vs. Control method bar graph 
showing the results from each subject for the 

obstacle navigation operation 


