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INTRODUCTION 

Independent mobility plays a key role in the functional, social, psychological, and material dimensions of wellbeing 
[1–2]. Accordingly, people with mobility disabilities face multiple barriers to health-related quality of life. Power 
wheelchairs (PWCs) help mitigate those barriers for people with severe mobility disabilities. However, functional 
steering is extremely challenging for many PWC users [3] and is associated with both perceived and real safety 
risks [4]. Smart wheelchairs address those risks through computational assistance [5] but simultaneously risk 
imparting users with skill regressions, errant mental models, and attentional deficits [6]. Adaptive automation 
minimizes those residual effects by calibrating the level of assistance in real time based on contextual cues from 
the environment and the user. 

In previous studies, we reported our work on contextualizing both components [7,8]. The user-based component 
[8] leveraged a vector autoregression model to classify electromyography (EMG) signals into PWC driving tasks. 
In that feasibility stage, classification was limited to one prediction per driving sequence rather than per time 
interval (e.g., every 125 ms) because the model was not exposed to real-time joystick movements. Furthermore, 
we used a fixed feature set without selecting or interpreting important features and channels. 

In this study, we extended our previous EMG work via online classification, feature reduction, and feature 
assessment. The purpose was to typify PWC joystick control in terms of EMG activity. First, we brought real-time 
resolution to the EMG model by merging instantaneous joystick input and reimplementing the sequence-based 
classifier (based on minimum mean squared error) as a real-time classifier (based on regularized gradient 
boosting). Second, we quantified the most important features and channels per participant by using a 
redundance-relevance algorithm. Third, given the resultant feature rankings, we evaluated joystick control 
strategies via the directional class centroids within each participant’s top-ranked feature spaces. 

METHODS 

Part icipants 

Three members of the Rehabilitation Engineering Laboratory participated in this study. None presented with a 
physical disability. 

Instrumentation 

A microcontroller board (Mega 2560 R3, Arduino; Somerville, MA) was manually interfaced with the joystick 
microcontroller board of a front-wheel-drive PWC (C400, Permobil; Lebanon, TN) to intercept FORE_AFT and 
LEFT_RIGHT signals at 10 Hz. The EMG signals were sampled at 2,000 Hz using three-lead myoelectric 
amplifiers (EMG100C, Biopac; Goleta, CA) via bipolar surface electrodes (EL507, Biopac). 

Procedure 

Electrodes were placed over the cleaned and abraded motor points of five arm muscles: flexor carpi radialis 
(FCR), extensor carpi ulnaris (ECU), extensor carpi radialis (ECR), pronator teres (PT), and triceps brachii (TB). 
Based on tasks #8, #10, and #11 of the Wheelchair Skills Test for PWCs [9], four driving activities were 
assessed—forward: roll forward 10 m, rightward: turn right 90° while moving forward, backward: roll backward for 
5 m, and leftward: turn left 90° while moving forward. Participants self-selected the most comfortable joystick grip: 
right-handed pinch grip for participant A and right-handed power grip for participants B and C. Each activity was 
repeated at least five times and up to eight times depending on participant availability. Activity segments were 
separated by brief resting periods. 

Data Reduction 

The joystick and EMG signals were synchronized using microsecond timestamps. The sparser joystick values 
were propagated forward to pad missing time points. The EMG signals were bandpass filtered using a recursive 
Butterworth design with low- and high-cutoffs of 20 Hz and 500 Hz, respectively. 
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A vector of 65 feature values was extracted from each 250 ms sliding window incremented by 125 ms, including 
13 values per EMG channel: 6 autoregression (AR) coefficients, 1 mean absolute value (MAV), 2 mean absolute 
value slopes (MAVS), 1 root mean square (RMS), 1 slope sign change (SSC) count, 1 waveform length (WL), and 
1 zero crossing (ZC) count. 

Data Analysis 

Classification was implemented using the extreme gradient boosting (XGBoost) algorithm, a modern tree boosting 
system with improvements over standard gradient boosters, including a regularized objective function to guard 
against overfitting. Joystick angles were partitioned into four polar bins to serve as classification labels. Joystick 
coordinates were only included if beyond a 20% radius of the neutral-to-maximum excursion distance. All 
classification was cross validated using a leave-one-trial-out policy. 

Features were ranked using the minimal-redundance-maximal-relevance (mRMR) algorithm, a feature selection 
filter with a mutual information criterion for estimating the optimal compromise between feature-feature 
redundance and feature-target relevance. Liu et al. [10] used a similar approach to detect relevant features from 
57 equally spaced EMG electrodes (i.e., not directly placed on motor points). The ranked features were 
successively combined as classifier inputs until diminishing returns were observed. With the resultant feature 
subset, the channels were then ranked by mRMR and successively combined as classifier inputs until diminishing 
returns were observed. 

For each participant’s top-ranked channel pair, feature centroids per joystick direction were generated for the top-
ranked feature set. 

All analysis was performed in Python 3. 

RESULTS 

During feature selection, cross validation 
plateaued after three, two, and three 
features for participants A, B, and C, 
respectively (Figure 1). For all three 
participants, the SSC feature was ranked 
highest and was also the only feature to 
be selected across all participants. The 
AR coefficients were ranked lowest across 
all participants. 

During channel reduction, cross validation 
plateaued after three, two, and three 
channels, respectively (Figure 2). The top-
ranked channel was different for each 
participant—ECU, TB, and ECR, 
respectively. The ECU channel was the 
only channel to be selected across all 
participants and was used as a reference 
axis for visualizing joystick directional 
classes across all feature spaces (Figures 
3–5). 

DISCUSSION 

Our results are valuable both for 
development and assessment. By 
minimizing input dimensionality 
(i.e., -85.0%, -93.3%, and -85.0% per 
participant), we reduce computational load 
at a negligible cost to classification 
accuracy (i.e., -3.1%, -3.0%, and -4.6% 
per participant). By minimizing channel 
count, we reduce the number of sensors 

 
Figure 1. Reduced feature sets selected by successively 
combining each participant’s ranked features to the point of 
diminishing returns in cross validation 

 
Figure 2. Reduced channel sets selected by successively 
combining each participant’s ranked channels to the point of 
diminishing returns in cross validation 
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to be worn. For a smart wheelchair user, this can mean the difference between wearing five sensors versus two. 
Beyond smart wheelchair considerations, the filtering pipeline also reveals relevant features and channels for 
visual interpretation. In each reduced feature set, we have a basis to evaluate PWC joystick control with respect to 
frequency and amplitude. The SSC and ZC features are frequency surrogates that use time domain information to 
encapsulate frequency content indirectly. The MAV and RMS features are amplitude measures that encapsulate 
signal energy while WL encapsulates signal complexity. 

Participant A’s control strategy (Figure 3) can be summarized by extensor activity for left-right movements and 
pronator activity for fore-aft movements. The amplitude space also reveals extension-pronation interaction—PT 
and ECU amplitudes are correlated positively for fore-aft movements and negatively for left-right movements. 

Participant B’s control strategy (Figure 4) is unique in the high utilization of the upper arm, possibly related to 
using a power grip. In the fore-aft axis, TB amplitudes are higher and lower for forward and backward movements, 
respectively. In the left-right axis, TB amplitudes are higher and lower for rightward and leftward movements, 
respectively. The strategy is also unique in its extensor utilization. We see rightward movements yielding high 
ECU energy but low ECU frequency. Fatigue is a possibility given abnormal frequency content but unlikely here 
given experimental context. Since joystick control with resting periods seems unlikely to induce fatigue, there may 
have been other physiological factors or hardware interference involved. Also of note is the overlap between 
forward and leftward movements in both 
feature spaces. This class similarity may 
explain the lower classification accuracy 
compared to participant A. 

Participant C’s control strategy (Figure 5) 
is unique in its heavy reliance on both 
extensors. This homogenous strategy may 
explain the consistently lower scores in 
cross validation. In general, we see ECU 
activity explaining left-right movements 
and ECR activity explaining fore-aft 
movements. The TB feature also ranks 
highly for this participant although not 
plotted as a feature space. Given that the 
TB feature only appears for the power grip 
participants, triceps activity may be 
distinct to the grip type. Furthermore, 
power grips may yield reduced 
discrimination between certain class pairs. 
We see limited class separation between 
forward and leftward classes across all 
feature spaces of both participants B and 
C, as well as limited separation between 
backward and rightward movements for 
participant C. 

These class similarities may indicate the 
absence of key features or channels 
needed to fully characterize joystick power 
grips. Our original set of features and 
channels may encapsulate sufficient 
information for PWC joystick pinch grips 
but not power grips. Alternatively, the 
mRMR algorithm may be overlooking the 
most discriminating features due to its 
classification-agnostic nature. In our 
results, we see frequency surrogates 
consistently outranking amplitude 
measures despite yielding apparently 

 
Figure 4. Joystick directional classes (contours) and centroids 
(arrowheads) in participant B’s top-ranked feature spaces 

 
Figure 5. Joystick directional classes (contours) and centroids 
(arrowheads) in participant C’s top-ranked feature spaces 

 

 
Figure 3. Joystick directional classes (contours) and centroids 
(arrowheads) in participant A’s top-ranked feature spaces 
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lower discriminability. Feature filters as a whole only consider intrinsic statistical properties—e.g., correlation, 
entropy, mutual information, etc.—without explicitly considering class discriminability. Classification-aware 
reducers maximize class separability but at a high computational cost. A hybrid feature reduction pipeline could 
initially use mRMR to select candidate features and subsequently rank those candidates with a classification-
aware wrapper. 

In future work, we will explore features, channels, and algorithms to better characterize PWC joystick power grips. 
More participants, including people with disabilities, will be recruited. With online functionality now implemented in 
both the environment- and user-based components, we will continue working toward a context-aware smart 
wheelchair with adaptive automation. Given risk levels reported by our environment-based component and 
congruence levels reported by our user-based component, the level of automation would be adjusted accordingly 
in real time. 

CONCLUSIONS 

This study identified the ulnar extensor as a commonality in PWC joystick control across all participants and grips. 
Feature space analysis further suggested that PWC users with pinch and power grips relied on pronator- and 
triceps-based tuning strategies, respectively. This preliminary finding on grip-based control strategies may be 
useful for PWC prescription and training. The finding also informs EMG-based PWC aids by identifying key 
features and muscles for real-time joystick classification. 
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