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INTRODUCTION 

Stroke has been the leading cause of long-term or permanent disabilities in adults. One of the common 
impairments left after stroke is weak limbs. These weak limbs or trunk can further hinder patients from walking 
and from returning to their functional status. The application of clinical assessment scales on stroke patients has 
posed a significant impact on rehabilitation. These items that patients perform poorly are the aspects that they 
need further training. Besides, the difference between sequential tests is a simple method to monitor patients’ 
training effects. Although most of these scales are easy to be administered in clinical settings, clinical experts 
cannot get all movement data from a single test. Along with these neuromuscular testing results, the kinematic 
analysis provides reliable and numeric data for clinical consultants to understand how neuromotor disorder 
affected stroke patients’ abilities. Today, mechanical engineers can embed many sensors into a small module, 
suitable for wearable devices, to gain movement data from human motion due to the advance of 
microelectromechanical systems. To establish reliable and accurate algorithms for estimating walking kinematics 
from these compact devices has been one of the major preoccupations of medical device research in the past 

decades [13]. Although these devices have applied to human motion analysis over the years, only recently has 
some researchers point how these devices can help clinical assessment scales [4]. 

Walking tests in stroke patients can give clinical experts many significant functional statuses and even the 
prognostic predictors. It is a feasible, intuitive, and reliable method in clinical units to obtain functional recovery 

status in post-stroke patients [59]. Over a few decades, there has been much research documenting how 
sarcopenia affects walking speeds. In short, walking speeds are one of the criteria to diagnose sarcopenia. 
However, walking speeds among stroke patients are also affected by weak limbs. It is, therefore, straightforward 
to conclude that stroke patients have a higher risk of getting sarcopenia [10]. Several methods have been 
proposed to obtain kinematics through wearable devices nowadays [11]. They are promising but challenging, 
such as obtaining accurate spatiotemporal data, integrating with several sensors, and other transmission 
issues[12]. Applying wearable devices, primarily composed of inertial measurement units in patients with 
neurological disorders, exist in some estimating errors in spite of their excellent performance in healthy 
participants [13]. One of the debating issues is integrating errors from inertial measurement units. Saremi and 
Marehbian note that walking speed and temporal data is less reliable in stroke with slow walking speeds (<0.5 
m/s) [14]. 

To sum up, the walking speed test is a clinically useful tool to evaluate patients’ functional status but there still 
exist kinematics that has impact on walking speeds. By using IMUs, there still exists challenges. There have been 
several advantages and disadvantages when either adopting wearable devices alone or clinical assessment 
scales alone. Another attractive topic is where and how many wearables needed to obtain enough kinematics for 
clinical application. Integrating wearable devices with clinical assessment scales should be the intuitive and 
workable method to overcome those shortages. The purpose of this research focuses on setting up a wearable 
system and managing to integrate clinical walk tests. This hybrid method is supposed to acquire kinematics 
among walkable stroke patients through wearable devices and to determinate the most critical location to provide 
additional data during walking tests. 

MATERIAL AND METHODS 

IMU Measurement Module 

To get all the gait parameters, we design a wireless inertial sensing device consisting of a sensing module, a control 
module, a wireless transmission module, a user interface, and a calculation algorithm. Each device consists of the 
SparkFun 9Dof Razor IMU M0 module that contains IMU sensor MPU-9250 and microprocessor SAM D21, 
BlueSMiRF Silver Bluetooth module, and 850mAh Lithium polymer battery. A 3D printer constructs the box with 
polylactic acid filament material. The size of the box is 7 cm x 5.1 cm x 2.2 cm, and the total weight of this module 
is 38 grams. In this study, we program the user interface by the software, LabVIEW, provided by National Instrument. 
The user interface is used to control and monitor the devices. This program can calibrate devices and control where 
and when to start to store data. This interface can handle these four wireless IMU devices and receive array data 
simultaneously from all the four devices. Besides, this interface includes several control buttons and twelve graph 
columns that can demonstrate real-time three-axis data from the four accelerometers, the four gyroscopes, and the 
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four magnetometers. To estimate angular displacement from IMUs is difficult. We adopt the so-called “the 
Madgwichk algorithm” [15]. 

IRB 120 Robot Trajectory Validation 

To get the good standard, this research also used ABB robot type IRB 120 for validation. ABB robot can produce 
an end effector trajectory. Data of end effector trajectory can be used to validate IMU devices. IMU devices were 
installed on the robot as shown in Fig. 1.  Refer to Fig. 2(b), we used only joints angle of θ1, θ2, θ3, and θ5. Each 
joint was represented by the angular displacement of IMU in Eqs. (1) to (4). 

 𝜃1 = −𝜃1,𝑧 (1) 

 𝜃2 = 𝜃2,𝑦 (2) 

 𝜃3 = 𝜃3,𝑦 − 𝜃2 (3) 

 𝜃5 = 𝜃4,𝑦 − 𝜃2 − 𝜃3 , (0) 
 

where 𝜃1,𝑧 is angular displacement of IMU1 in z-axis, 𝜃2,𝑦 is angular displacement of IMU2 in y-axis, 𝜃3,𝑦 is angular 

displacement of IMU3 in y-axis and 𝜃4,𝑦 is angular displacement of IMU4 in y-axis. 

The forward kinematic algorithm is needed to get end effector point of manipulation robot from each joint angle. 
Before using forward kinematics, we need to determine Denavit-Hartenberg parameters. Denavit-Hartenberg 
parameters are parameters of manipulation robot that are defined with Denavit-Hartenberg method to facilitate 
forward and invers kinematics calculation. Table  is Denavit-Hartenberg parameters from ABB IRB120. There is a 
modification from the parameters (in bold) because robot has been modified on the last joint, shown in Fig. 2 (a). 

 
Fig. 1: ABB IRB120 with IMUs position 

 

  
Fig. 2: (a)Size specification (b)Joints rotation of ABB IRB120 
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Table 1: Denavit-Hartenberg parameters of ABB IRB120 with modification 

i di(mm) θi (rad) ai-1(mm) αi-1 (rad) 

1 290 θ1 0 0 

2 0 θ2 -π/2 0 -π/2 

3 0 θ3 270 0 

4 302 θ4 70 -π/2 

5 100 θ5 0 π/2 

6 72+132 θ6 +π/2 0 -π/2 

 
To simplify calculation end effector point of the manipulator (forward kinematics algorithm), we need to use 
Denavit-Hartenberg transformation matrix Eq. (5). Components that used in the matrix are from Table . The 
transformation matrix will calculate position coordinate of joint i from joint i-1. If the robot has several joints, an 
end effector of the robot can be calculated by multiplication of transformation matrix sequentially, as Eq. (6). The 
end result of multiplication matrix is in Eq. (7). From matrix in Eq. (7), we can get coordinate information of end 
effector to refer to robot's origin (Px, Py, Pz). 
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ABB robot can only produce trajectory with the frequency 10 Hz for each point, while in this experiment, we used 
sampling frequency 100 Hz and 50 Hz. So before validating the trajectory, IMU trajectory data was sampled with 
interval 100 ms (downsampling). To evaluate the performance of the algorithm,  the root means square error 
(RMS) and error percentage were given by Eq. (8) and Eq. (9), where xi, yi, and zi denote the end effector position 
from IMU’s calculation and xi,id, yi,id, and zi,id denote the end effector positions that were produced by ABB robot. 
xc , yc and zc are the center point of actual robot trajectory Eq. (10). The distance between center to the ideal point 
is chosen as error percentage comparator in order to be fairer because trajectory motion is far from the origin 
point of the ABB robot. 
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Two motion types are designated to verify the trajectory reconstruction algorithm. Motion 1 mimics the 
motion of leg in the gait cycle [16]. Joint of θ1 produced angle as hip angle, θ3 as knee angle and θ5 as 

ankle angle. The motion pattern of flexion angle is divided into 10 movement steps defined in Table. The 
motion repeated in three times. So in this motion would generate trajectory in two dimensions. In the 

motion 2, ABB robot rotated with the trajectory in three dimensions with the angle motion each joint is 
defined in  

Table . Purpose of this motion was only to get trajectory in three dimensions of ABB robot to evaluate trajectory 
that would be generated by wireless IMU system. 
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Clinical application on walking speeds 

The first IMU is affixed directly on subjects’ low back, about the level of their fifth vertebrates. We secured the 
second IMU on their lateral thigh, the third one on their lateral calf, and the fourth one on their dorsum of feet. All 
IMUs are fastened firmly by Velcro, as illustrated in Fig. 3 for the four IMUs. After wearing the four IMUs, participants 
receive a 6-meter walk test on flat terrain. 

In the beginning, participants sit on the chair; then, they stand up by themselves after getting the hint to start. After 
balancing well from sitting, they begin to walk at a comfortable speed. The designed computer program has the 
function to mark the time manually when they go through the start and stop recording points. They repeat 
consecutively for four times after enough rest. The start point for a 6-meter test is the third meter after they start to 
walk, and the distance to stop recording is the eighth meter from the outset. 

Table 2: Joints angle rotation of motion 1 

  Joint θ1 Joint θ2 Joint θ3 Joint θ4 Joint θ5 

1 0 30 0 0 0 

2 0 20 15 0 -5 

3 0 10 10 0 0 

4 0 -5 0 0 5 

5 0 -15 0 0 10 

6 0 -20 15 0 0 

7 0 -10 35 0 -25 

8 0 10 50 0 -15 

9 0 25 40 0 0 

10 0 30 10 0 5 

 
Table 3: Joints angle rotation of motion 2 

  Joint θ1 Joint θ2 Joint θ3 Joint θ4 Joint θ5 

1 0 30 0 0 0 

2 10 20 15 0 -5 

3 30 10 10 0 0 

4 25 -5 0 0 5 

5 0 -15 0 0 10 

6 -20 -20 15 0 0 

7 -30 -10 35 0 -25 

8 -20 10 50 0 -15 

9 -5 25 40 0 0 

10 0 30 10 0 5 

 
Fig 3. The locations and orientations of the four IMUs. 
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Subjects and Materials 

In the beginning, participants sit on the chair; then, they stand up by themselves after getting the hint to start. After 
balancing well from sitting, they begin to walk at a comfortable speed. The designed computer program has the 
function to mark the time manually when they go through the start and stop recording points. They repeat 
consecutively for four times after enough rest. The start point for a 6-meter test is the third meter after they start to 
walk, and the distance to stop recording is the eighth meter from the outset. 

Clinical application on walking speeds 

We recruited walkable adult patients with stable neurological recovery after stroke for longer than one month. Those 
who cannot follow orders, with recurrent strokes or any surgery in their low limbs before, fall within six months before 
taking part in this study are exclusive. We also exclude participants who received botulinum injection in lower 
extremity within six months. All participants received a serial of neuromuscular assessments for stroke, including 
the Fugl-Meyer assessment scale for lower extremity, Berg balance scale, Postural Assessment after Strokes, and 
so on to evaluate their disabled status. 

Before attending the test, they walk for a short distance to warm up. Then, we secured four IMUs on the participants. 
After that, all participants stand up, balance well, and start to walk for 10 meters, stop, turned around, and sit again 
to complete a trial. Subjects are asked to complete four consecutive trials. They walk at a comfortable speed, which 
they can walk independently with or without any walking devices. Figure 4 gives an example for the computed 
angular displacement. 

RESULTS 

There are twenty-five participants recruited in walking tests. There are twenty males and three females. The average 
of age is 51-year-old. The average body height is 160.5 cm and the average body weight is 74.3 kgs. All participants 
are right-handed. There are ten subjects with right limbs affected and thirteen with left limbs affected. The results 
of the Fugl-Meyer assessment for lower extremity read from the lowest eleven to the highest twenty-six. These 
scores hint their disability level in walking ranged from high walking function to lower walking function. All subjects 
were consistent with dysfunction left in their lower limbs [17]. There was one subject that completed only three tests 
because of fatigue in his fourth test.  

The four IMUs were fastened at different locations and therefore, the average walking speeds were tested for validity. 
To test intraclass correlation, a single-rating, absolute-agreement, and 2-way mixed-effects model were adopted. 

All the walking speed results estimated from these four IMUs revealed excellent coefficients, ranging from 0.9981 
[18]. The concurrent validity tests proved that any one of IMUs in this study can estimate the average walking 
speeds correctly. The four IMUs in this study can also count steps well. Accordingly, the IMU affixed on the back is 
the most useful one to obtain additional kinematics during walk tests. 

The trajectory range of motion in each joint during walking read little relationship with average comfortable walking 
speeds. The Pearson’s correlation result is listed in the Table 4. The other kinematics are all tested but only 
moderate correlation of hip range of motion along coronal plane own moderate correlation with average walking 
speeds. The result is listed in the Table 5. 
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Fig. 4 Computed angular displacement of hip and IMU4 (dorsum of feet). 

 

Table 4. The Correlation results of average trajectory range of motion in each leg joints and average walking speeds 

Trajectory range of motion Correlation results with average walking speeds 

Hip 0.231852 

Knee -0.01578 

Ankle 0.060535 

Summation of three joints -0.00598 

 
Table 5. The correlation results of average walking speeds and the three-dimensional trajectory ranges of 

motion from the IMU located on the back. 

Trajectory range of motion Results 

Along sagittal plane -0.23655563 
Along coronal plane -0.464260111* 
Along transverse plane -0.23647188 

* Moderately correlated 
 
CONCLUSION 

To sum up, a wearable device can add additional kinematic data to the clinical walk test. The IMU attached to the 
midline of back at the level of the fifth lumbar vertebrae can provide kinematics, including step counts, average 
step length, cadences, the 3-dimensional angular displacements occurring in the pelvis during walking. The 
rotational range of motion along coronal planes also has a moderate relationship with comfortable walking 
speeds. This hybrid module can be a workable and useful guide for rehabilitation in stroke patients. 
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