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INTRODUCTION 
Life Expectancy of individuals with Spinal Cord Injuries (SCI) has increased with 43% of those who experience 
their injuries from ages 25 to 34 years living for another 40 years [1]. Yet, SCIs result in lowered levels of mobility, 
primarily requiring these individuals to rely on a wheelchair for daily mobility [2]. Despite the use of a manual 
wheelchair for physical activity (PA), this population of manual wheelchair users (MWUs) has lesser accessibility 
and fewer opportunities to engage in PA in comparison to the general population [3]. These issues lead to an 
increased prevalence of many chronic diseases associated with physical inactivity, including cardiovascular 
disease, diabetes, cancer, hypertension, obesity, depression, and osteoporosis [4]. 
Activity monitors have been widely utilized to track and promote changes in PA, with ActiGraph activity monitors 
(ActiGraph, LLC., Pensacola, FL, USA) being the most extensively studied device used to track PA in research 
settings [5, 6]. The ActiGraph devices are capable of collecting raw acceleration signals at a set frequency, as 
well as producing a proprietary variable called ‘count’ for each accelerometer axis. These ‘count’ recordings from 
all 3 axes are used to obtain a vector magnitude value, being vector magnitude count (VMC), which is often 
utilized as in predictive algorithms for physical activity intensity and energy expenditure in many research 
manuscripts. For example, several research groups including Learmonth [7], McCracken [8], and Veerubhotla [9] 
developed VMC-based thresholds for classifying physical activities performed by MWUs into sedentary behavior, 
light-weight intensity, and moderate-to-vigorous PA (MVPA) intensity. Yet, as VMC can only be obtained through 
ActiGraph devices and its associated software that costs $1700 [10], the applicability of these algorithms is 
restricted. Meanwhile, there are many other commercial wearables devices that are just as capable of recording 
raw acceleration signals but offered at an affordable price without requiring specialized software. Therefore, it is 
important to develop predictive algorithms for physical activity intensity based on raw accelerometer signals 
instead of proprietary ‘counts’. In addition, translating raw accelerometer data sampled at a higher frequency 
(e.g., 30Hz) in an entire second or minute into a single ‘count’ may eliminate the rich features in the 
accelerometer signals that could potentially help improve the accuracy of PA estimation.  
The purpose of this study is to develop a physical activity intensity classification model based on raw 
accelerometer signals for MWUs with SCI. A study protocol that encapsulates a series of ADLs with varying 
intensities was used to develop and cross-validate the model.  
METHODS 
This study was conducted at two sites including the Human Engineering Research Laboratories (HERL) in 
Pittsburgh, PA and the James J. Peters VA Medical Center in Bronx, NY. Approval for this study was granted by 
the US Department of Veterans Affairs’ Central Institutional Review Board. The inclusion criteria are 1) between 
the ages of 18 and 65; 2) having an SCI at least one-year post injury and medically stable, and 3) using a manual 
wheelchair as their primary means of mobility for at least 40 hours/week.  
Study Protocol 
Participants were asked to avoid taking part in any MVPA the night before testing, along with ingesting any 
caffeine or food on the day of testing. Individuals first gave informed consent and completed a demographics 
questionnaire. Individuals were then instructed to lay in supine position while their height was measured using a 
tape measure. Weight was measured while individuals were in their wheelchair, on a wheelchair weight scale 
(Detecto, Webb City, MO, US). This weight was then subtracted by the weight of the wheelchair alone. For the 
activity protocol, individuals were asked to first rest in a seated position for 30 minutes, and then rest in supine 
position for 20 minutes. This was then followed by a randomly selected array of ADLs including: resting while 
sitting in a wheelchair; propulsion at self-selected slow, normal, and fast pace on flat tiled surface; propulsion 
up/down a slope; watching TV; working on a computer; practicing shooting a basketball; sweeping/vacuuming the 
floor; loading and unloading a dishwasher; weight lifting; TheraBand exercises; arm ergometry exercise at a self-
selected slow and fast pace; folding laundry; and being pushed in their wheelchair. Each activity was performed 
for 10 minutes with a minimum break of 3 minutes between each activity. 
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Instrumentation 
Individuals were equipped with a COSMED K4b2 portable metabolic cart (COSMED Inc, Rome, Italy), that 
measures oxygen uptake (VO2) and carbon dioxide output (VCO2). Individuals were also equipped with an 
ActiGraph GT9X Link on the dominant wrist, recording raw acceleration data at 30 Hz. Raw signal data was 
obtained from the ActiGraph ActiLife software (v6.11.9). 
Data Preprocessing 
All data that did not constitute activity data was removed. If either data for the K4b2 or the ActiGraph was not 
available for a minute due to device malfunctioning, data for both devices was removed. Only steady-state data 
for each activity trial was obtained in the final dataset. Steady-state is defined as VO2 and VCO2 measured by the 
K4b2 having changed less than 10% for 5 continuous minutes [11]. If this wasn’t available for an activity, a 
minimum of 3 minutes was attempted [12], or the data was removed [12].  
All data was organized into different PA intensity categories, being the metabolic equivalent of task (METs), 
defined as the average VO2, in units of ml kg-1 min-1, divided by 2.7 ml kg-1 min-1 [13]. This served as the criterion 
for PA intensity, with values below 1.5 as resting, those in-between 1.5 and 3.0 as light-intensity, and those above 
3.0 as MVPA. 
Data Modeling & Validation 
A signal processing method, i.e., discrete wavelet transforms (DWT), was utilized to obtain potential predictors. 
DWT is able to capture significant features from natural signals and present them as a subset of DWT coefficients 
in a much smaller form than the original signal, essentially compressing the data. Since data sampled from the 
ActiGraph device is at 30 Hz, a single minute contains 1800 values. This approach is able to capture all the raw 
signal values and compress them into a smaller subset of feature rich coefficients.  
Twelve total potential predictors were obtained using DWT on raw signal 
x-axis, y-axis, z-axis, and vector magnitude data. Using Daubechies 2 
mother wavelet, raw signal data was sampled through two levels of 
decomposition. Euclidean norm was then applied to the first and second 
levels of resolution of the detail coefficients along with the approximation 
coefficient of the second level, giving a total of 12 predictors. 
A random forest trees classification model (RFTM) was developed to 
classify sedentary activity, light-intensity PA, and MVPA using the 12 
predictors. A 5-fold cross validation process was used for model 
validation, where 80% of the data was used to develop the model and 
the remaining 20% of data was used to validate the model in each fold. 
The data was stratified based on intensity levels to ensure the same 
intensity distribution in the model development and validation datasets. 
The cross-validation was also used to select the number of trees (starting 
at 10 trees with a 10-tree interval until 100 trees) for the RFTM that yields 
the best average accuracy. The number of trees that yielded the best 
accuracy was used as the final model. The sensitivity, specificity, and 
overall classification accuracy for the model was calculated for each fold. 
Also, a confusion matrix summing the values of all 5 models on all 5 
validation sets was calculated.  
RESULTS 
A total of 32 participants were recruited and tested in this study. There were a total of 2,165 steady-state minutes 
of activity data. Of this data, 487 minutes (23%) were classified as sedentary behavior, 895 minutes (41%) being 
light-intensity PA, and 783 minutes (36%) being MVPA based on the criterion measure. Across these participants, 
the total steady-state activity minutes obtained ranged from 18 to 96 minutes with an average of 69 ± 20 minutes 
from each participant. Additional demographic information can be found in Table 1. 
Based on cross validation, the RFTM with 80 trees yielded the best average accuracy of 78% ± 2.4% across the 
five folds. Table 2 presents the sensitivity and specificity of classifying each intensity in each fold using mean, 

Table 1: Demographic Data 

Variables Mean (SD), n (%) 

Age (Years) 40 (13) 
Weight (Kg) 83 (21) 
Height (in) 69 (4) 
Gender  

Male 26 (81%) 
Female 6 (19%) 

Body Mass Index  
BMI ≤ 25 13 (41%) 

25 < BMI < 30 11 (34%) 
30 ≤ BMI 8 (25%) 

Time as MWU 
(Years) 9 (8) 
Lesion Level  

Cervical 2 (6%) 
Thoracic 26 (82%) 
Lumbar 2 (6%) 

Not Reported 2 (6%) 
Lesion Type  

Complete 18 (56%) 
Incomplete 8 (25%) 

Not Reported 6 (19%) 
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standard deviation, and range. Table 3 shows the confusion matrix detailing the correctly classified and incorrectly 
classified PA intensity minutes across all five folds. 
DISCUSSION 
In this study, we built an activity intensity classification model based on raw acceleration signals for MWUs with 
SCI. As no proprietary information is used for model development, the model could be potentially used by any 
device that records raw acceleration signals.  
We used a machine learning approach to build a classification model where we applied signal processing 
techniques, specifically DWT on raw accelerometer values to produce potential features for the model. We chose 
the RFTM, a powerful ensemble learning algorithm, that combined multiple trees into one predictive model in order 
to decrease variance, bias and improve predictions. 

Table 2: Model Performance across 
each fold of validation 

 Sensitivity Specificity 

Sedentary 
80% ± 6.0% 

(70% - 85%) 

94% ± 2.4% 

(90% - 96%) 

Light 
75% ± 4.9% 

(68% - 80%) 

81% ± 3.3% 

(76% - 84%) 

MVPA 
81% ± 3.9% 

(75% - 85%) 

91% ± 1.2% 

(90% - 92%) 

 
Based on the study results, the model yielded a good specificity (with good stability across each fold) for sedentary 
time and MVPA, indicating the model could perform reasonably well when it is used to classify minutes spent in 
these two intensities. However, the model lacked the ability to classify light-weight PA with a relatively low specificity. 
From the confusion matrix, it can also be seen that light-weight PA could be wrongly classified into either sedentary 
or MVPA category. We noticed that some light-intensity activity such as sweeping or folding laundry that involves 
consistent and large ranges of upper limb movements, may give higher raw acceleration values, leading to wrong 
classification into MVPA. While other light-intensity activities such as weight-lifting for some individuals was light-
weight based on criterion METs, but were wrongly classified into sedentary category due to the infrequent upper 
limb movements. From the confusion matrix, there are also a portion of MVPA minutes that were wrongly classified 
into light-intensity. A trend we observed was that the model tended to incorrectly predict resistance-based activities. 
These typically contained METs values in the range of MVPA, however the lack of changes in raw signal data during 
these activities may have caused the predictors to record lower intensity values, leading to an increase in incorrectly 
classifying MVPA as light-intensity activity. With these observed trends, it might be possible to carefully devise 
features (or predictors) that can better capture the patterns of the movements in future work in order to further 
improve the prediction accuracy.  
There are a few limitations in the study. First, although the study used the cross-validation approach, the study 
lacked a separate large testing dataset to validate the final classification model. Second, the number of subjects is 
relatively small and the activity minutes for each participant varied to a large degree, therefore, we split the datasets 
based on the number of minutes and an intensity-stratified method instead of based on the number of participants 
during cross validation. Thus, the model performance obtained may not accurately reflect the real-world 
applications. Finally, the RFTM model with 80 trees could be computationally costly and may not be appropriate for 
applications that need to provide real-time feedback to users. We plan to investigate other machine learning 
algorithms and investigate other potential features that may better capture the movement patterns.  
CONCLUSION 
A classification model to predict time in sedentary, light-intensity, and MVPA for MWUs with SCI was developed 
based on raw accelerometer signals and assessed using 5-fold cross-validation. Results from this study show that 
the model can potentially be used to predict sedentary and MVPA with moderate accuracy, however it should be 
used with caution when trying to measure time in light-intensity PA. 

Table 3: Confusion matrix showing minutes spent at 
each intensity based on criterion and model 
estimation 

  Estimated Minutes 

  Sedentary Light MVPA 

Criterion 
Minutes 

Sedentary 391 95 1 

Light 101 672 122 

MVPA 3 149 631 
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