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Figure 1: Participant performing 3-D VR movement test to 
record baseline upper limb motions by pushing away spheres 
in suspension at different levels around their body in order to 
determine threshold ranges of motion and gesture velocities. 
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INTRODUCTION 
Gesture segmentation also referred to as gesture extraction or gesture spotting is a critical step in the process of 
gesture recognition. Many gesture recognition systems including those employed in Virtual Reality (VR) often 
assume that all input gestures are deliberate and relevant [1]. Gesture segmentation is employed to separate 
continuous motion data into discrete gestures [2], which can be divided into two classes - intentional gestures and 
unintentional movements [3]. Extraction techniques are required to determine start and end points of a deliberate 
motion from continuous time series data, particularly when there is a change in the gestures performed by the 
individual. However, gesture segmentation can often be difficult due to sensor drift, sensor inconsistencies, 
sensor moving independent of hand motion, inherent hand tremor, and unintentional motions [4-6]. 
Several gesture segmentation systems have been proposed by different researchers using velocity-based 
profiling depending on the nature of data stream and type of gestures expected. However, the disadvantage of 
the previously proposed methods in the literature is the need for training data or labelled gestures, which includes 
the determination of a start and endpoint. Additionally, while these systems are trained and function for able-
bodied individuals, the same techniques can prove to be challenging for individuals with large variability in upper 
limb movements due to a motor impairment. This is largely the case in rehabilitation of individuals with upper limb 
mobility impairments such as stroke [7], traumatic brain injury, or spinal cord injury (SCI).  
In this paper, a gesture segmentation technique was developed based on an approach that identifies the 
beginning and end of intentional gestures using temporal changes in continuous movements of the upper limbs. 
We developed a baseline VR tool, which was used by individual users to determine the threshold velocity for 
individuals. In addition, a commercial VR system using modified trackers for individuals with upper limb mobility 
impairments and wheelchairs was used for at-home rehabilitation exergaming. This velocity profile-based 
approach for gesture segmentation permits unsupervised gesture detection for tracking the purposeful 
movements of users that are not able to follow a set of predetermined gestures during rehabilitation [8].  
METHODS 
Experimental Setup 
Six participants (1 female and 5 male) with cervical 
level (C4-C7) SCIs were recruited from the 
Rehabilitation Hospital of Indiana and Purdue 
University. The mean age of the participants was 
37.5±9.9 and had been injured for 15±11.2 years. 
The study protocol with participant informed consent 
was approved by the Institutional Review Board.  
The commercially available HTC Vive® platform was 
used for VR exergaming. The HTC Vive® comprises 
of two base stations, called lighthouses, which have 
spinning infrared (IR) lasers, head mounted display 
(HMD), and trackers with a constellation of IR 
receivers to precisely determine their position and 
orientation. Baseline motion data of a participant’s hand was collected while performing a 3-D spatial VR test [9]. 
Briefly, participants were presented with six rings consisting of several virtual spheres spawned around them from 
above their heads to levels below their knees (Fig. 1). The participants were instructed to push as many spheres 
as they could as far outwards as they could in 2 minutes. The 3D coordinates representing the motion data was 
recorded at 90Hz. The participants were recorded with a video camera while they performed the VR game for 
mixed reality analysis. 
Gesture Segmentation  
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Figure 2: 3-D heatmap generated by kernel density 
estimation showing areas of high frequency movement of 
the arm.  The green markers are the spheres from the 
baseline task. The position of the participant’s head is 
indicated by the grey sphere. 

Figure 3: Representation of gesture segmentation of based on 
the velocity profile to segment gestures with corresponding 
screenshots of participant performing the distinct gestures 
(green dashed box). Red dashed lines on the velocity profiles 
represent the calculated threshold velocity with the grey 
dashed lines representing end points of the gestures.  

Gesture segmentation involved a two-step process. First, a threshold velocity was measured during the 
participants’ performance of the VR baseline movement test to determine if a deliberate gesture was being 
performed. Second, velocities of motion were calculated to delimit gestures. The velocity of arm motion was 
calculated by performing a time derivative of the 3D hand position data extracted during the baseline task. 
Threshold velocities were attained either at areas of rest or at intermediate poses between two intentional 
gestures known as a ‘turning point’. Areas of rest were determined through a combination of Kernel density 
estimation (KDE) with a Gaussian kernel and K-means clustering algorithm. Density scores (di) were calculated 
through equation 1 below, wherein 𝑖 ranges from 1 to the length of the time series data recorded from gameplay, 
then used to color the 3D coordinates to plot a heat map of the gameplay.  

𝑑! = 𝑓%"(𝑥! , 𝑦! , 𝑧!)	(1)  

A K-means algorithm was used to identify and separate 
various clusters with similar density scores but distinct 
(spatially separated) 3D coordinates. This allowed 
determination of clusters which are areas that were 
frequently visited by the hand [10]. Of these clusters, 
the cluster that was associated with the area of rest for 
the particular individual, defined as the cluster with the 
highest density and confirmed visually through mixed 
reality recording.  
In Figure 2 is a typical heat map of areas of frequent 
movement from a participant generated by KDE 
(shown in blue). Many virtual spheres (indicated in 
green) can be seen to have been displaced (out of 
plane) while some are untouched by the participant still 
lie in their rings. The area of rest has the largest 
density as generated by the KDE (Fig. 2 shown in red). 
We defined the threshold velocity as the local maxima 
in velocity within the area of rest. Additionally, a 
threshold velocity could also be reached at a turning 

point which was an intermediate pose between two gestures. In this intermediate pose, the hand has a velocity of 
zero while the acceleration is non-zero as the direction is changing, thus a turning point. Acceleration of the hand 
is calculated through a double derivative of the 
position of the hand. At turning points and rest 
points, the velocity was either very low or close to 
zero.  
A deliberate gesture was defined as one where the 
velocity of the recorded movement exceeds the 
determined threshold velocity. The temporal data 
was then sliced up using the threshold velocity as 
the delimiter, yielding individual gestures of variable 
length. All the extracted gestures exhibited a 
sequence wherein they start and end at a resting 
position or a turning point.  
The resting position was used as the reference point 
for determining the resting velocity threshold. 
Through this delimitation of individual gestures 
based on velocity profiles, we were able to separate 
gestures for each participant, despite differences in 
arm mobility and their individual performance.  
RESULTS 
We were able to delimit gestures using the velocity 
and acceleration of the hand positions while the 
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participants performed the various actions. Figure 3 shows a 2-D output of gesture separation over time for one of 
the participants. The calculated threshold velocity varied for each participant. When the velocity of the hand 
dropped below the threshold velocity, it demarcated the start/end points of a gesture (Fig. 3, grey lines).   
The gestures extracted through the velocity delimitation were compared with videos taken of the participants 
during gameplay. Through manual inspection of each participant’s videos, it was identified that the gestures 
delimited through the velocity profiles matched the change of gestures performed by each participant (Fig. 3). In 
addition, it was identified that through the velocity profiling, it was possible to discriminate the start and end points 
of gestures performed by the participants despite the 
variation of gestures performed. 
As shown in Figure 4 the faint red points represent 
tracked hand motions. Blue points represent 
delimiting points of gestures. Green points represent 
virtual stimuli (spheres) presented to the participants 
in the VR game. We observed that end points (blue 
markers) occur closest to the displaced green 
spheres in the positive Y direction. The end points of 
gestures are clustered either close to the body 
(closest to the head) or at the bounds of motion away 
from the body (farthest from the head). These are the 
locations where the participant interacted with the 
virtual spheres. The gesture delimitation through 
velocity profiles was performed for all six participants 
resulting in similar observations. 
DISCUSSION 
Gesture segmentation plays a critical role in being able to discriminate between gestures, particularly with a 
continuous stream of movement data. We propose a novel technique to extract gestures based on the change in 
velocity of movement of the participant’s hand using a commercially available VR system. Through the velocity 
profiles, it is possible to segment gestures and identify start and end points without requiring training data and 
with lesser computational power. Through this gesture extraction method, we could streamline the process of 
analysis and provide implementation of the calculations on a mobile device or portable computer during real-time 
gameplay. This information can be used to track the performance of players’ movements for various exergaming 
applications. 
Applications in Rehabilitation  
VR systems are becoming increasingly popular as a tool for rehabilitation for individuals with differing motor 
disorders [11,12]. Rehabilitation at home is critically needed as the durations of rehabilitation in hospitals are 
continually being decreased due to increasing costs [13]. Therefore, there is a need to provide portable and 
inexpensive rehabilitative tools for patients for use in their homes. Rehabilitation applications would benefit from 
the ability to discriminate between purposeful and other non-useful gestures being performed by participants in 
the virtual space. These purposeful gestures could be evaluated by clinicians remotely to track the rehabilitation 
performance of outpatients. During an example exergame application, participants targeted and popped balloons 
at their own pace resting when necessary. For purposes of rehabilitation, we were only interested in recognizing 
the balloon-popping movements and not the retraction of the arm for rest or waiting for the next balloon to pop. 
Using this approach, it was possible to perform gesture segmentation and real-time after VR gameplay. This 
allows clinicians to better understand the type of motions that are performed by the individual over time or after 
different gameplay scenarios [14]. The tool would allow clinicians to correct the participant if there is an erroneous 
gesture or a compensatory gesture being performed. Compensatory gestures  are often considered a ‘bad habit’ 
during rehabilitation as it does not allow patients to recover complete usability of the targeted limb/muscle [15].  
This gesture segmentation technique can be used to group similar gestures longitudinally to ensure that the 
performance of the patient is improving over time. For example, clinicians can track an upward arm motion 
relating to the performance of the deltoid muscles through comparison of metrics such as peak velocity of the 
gesture. Changes in this metric can be tracked over time to provide clinicians better insight on progress and make 
informed rehabilitation recommendations to improve motor outcomes or prescribe further corrective measures.  

 
Figure 4: Gesture segmentation demonstrated through a 3D 
plot. The red lines are the gestures which were extracted 
through the algorithm and the blue are the areas where the 
velocity of motion is below the set threshold velocity 
indicating a delimiting point of a gesture. 
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Implications in Gesture Recognition in VR Systems   
Many gesture recognition systems perform gesture segmentation using machine learning models based on a 
lexicon of pre-trained gestures. This requires training to be repeated several times for various people making it 
cumbersome in VR applications. Our velocity profile technique enables gesture segmentation is trained using the 
VR baseline movement test not from predefined gesture data. In addition, more computational methods result in 
slower gesture recognition preventing real-time gesture segmentation [16]. Through the use of gesture velocity 
profiles, it is possible to optimally perform computationally non-intensive segmentation.  
For individuals with upper limb mobility impairments, it is difficult to universally characterize user-specific gestures 
in order to make generalizable assertions based on the idiosyncratic movements of an individual’s motor 
capabilities  [8]. The velocity profiles technique is advantageous since it does not require complex training 
algorithms or pre-determined gestures. This allows for greater flexibility in deployment of VR exergames for 
rehabilitation. In summary, through velocity profile-based gesture segmentation it is possible to extract individual 
gestures, which can then be used for unsupervised training for gesture recognition algorithms. It would be 
particularly beneficial in applications where it is not possible to follow a set of pre-determined gestures.   
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