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INTRODUCTION 
Electric power wheelchair (EPW) users with upper limb impairments require assistance to participate in everyday 
activities. For those with arm impairments, even basic tasks like eating with a spoon or drinking from a cup are 
nearly impossible. The ability to reach and manipulate objects is consistently rated as one of the most important 
challenges [1]. There are few assistive manipulation options that allow for tasks requiring finer hand movements. 
In some cases, family or hired caregivers help with activities of daily living [2,3], but, ideally, users would be able 
to access tools and technology to empower them to engage independently in self-care tasks. Assistive Robotic 
Manipulators (ARMs) provide an option to allow EPW users to engage in such tasks [4], and provide a variety of 
functions compared to specialized low-tech manipulation tools [5]. However, currently available commercial 
wheelchair-mounted ARMs are cumbersome to control. In the same way EPWs require a joystick to navigate a 
wheelchair through a room, an ARM requires a joystick to move the end effector through the environment. Unlike 
an EPW, the ARM requires the actuation of six joints through a two axes joystick (forward/back, left/right) with 
many mode switches that toggle between orienting the wrist, extending/retracting the arm, and opening/closing 
the gripper to interact with the environment. This interaction quickly becomes cognitively difficult and increases 
operation time. Bhattacharjee et al interviewed an expert Kinova ARM user that stated manually controlling the 
arm “(fully non-autonomous) to pick one piece of fruit and bring it to his mouth would take him approximately 45 
minutes” [6]. Work by Herlant et al describes how a low-dimensional joystick interface causes a high number of 
mode switches which consumes 17.4% of task time and increases Kinova ARM user’s cognitive load [7]. Despite 
these difficulties, many users perceive the control challenges as worthwhile given that these devices also 
increase independence [3].  
ARM control challenges can be alleviated, while maintaining independence benefits, through the addition of 
autonomous robotic software functions [8]. Where autonomy is best applied, and how the user switches their 
control with the autonomy system, is currently an active area of research [6,8]. This paper focuses on describing 
the software architecture that allows the designer to assign each task action to user control or robot control for 
multi-action manipulation tasks. We define this as an assignment of control authority where an agent (user 
teleoperation or robot software) is responsible for executing the current action. The ability to change the control 
authority assignment allows future investigation into a user’s controllability preferences and creates a software 
technology that can adapt to a user’s changing abilities, preferences, and contexts. This architecture facilitates 
the investigation of the appropriate discretization of control assignment between a user and assistive robot within 
a manipulation task.  
SYSTEM OVERVIEW 
The hardware system consists of a Kinova Gen3 ARM with wrist mounted camera, joystick, Jetson Xavier NVIDIA 
computer, and a touchscreen showing a graphical user interface (GUI) for transitioning between user and robot 
control. The software architecture uses the Robot Operating System (ROS) framework with the publish-subscribe 
messaging pattern. Each process in the system, referred to as a node, can publish and receive messages 
asynchronously. Our current system consists of six nodes (rectangle boxes in Figure 1). For this paper, we will 
focus on describing the manipulation node (Figure 1). The manipulation node executes the sequence of states 
and actions defined by the task’s internal state machine. 
HIERARCHICAL SOFTWARE DESIGN 
Manipulation tasks are inherently hierarchical where precise manipulation movements combine to produce more 
functional movements (e.g., push, pull, reach) which then form sub-tasks that combine to complete a task. These 
sub-tasks are often completed in phases which gives them a sequential temporal element where postconditions 
are satisfied before transitioning to the next sub-task. For example, drinking from a glass first requires that a glass 
is retrieved and filled. We will refer to a sub-task as a task sequence (𝑇!) which consists of the state and action 
steps within a functional task. Multiple task sequences define a main task (𝑇"), where (𝑇! 	⊆ 	𝑇").  
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Upon start of the manipulation node, 
the current main task is parsed from 
the configuration file (e.g., make 
popcorn, drink water) and 
instantiated. The executive layer 
loops through the system states. 
TELEOP-FREE is the starting system 
state outside the sequence of any 
task. This state allows the user to 
freely move the ARM and displays 
interaction objects seen by the ARM 
camera to the user through a 
touchscreen interface. If the user 
selects a highlighted interaction 
object, the executive transitions to 
AUTONOMY, TELEOP-IN-TASK, or 
USER-FEEDBACK which are the 
three system state types assigned to any state within a 𝑇!. These three system states delineate control authority 
where AUTONOMY is robot software control, TELEOP-IN-TASK transitions control to the user and waits for 
touchscreen feedback for transitioning control back to the robot, and USER-FEEDBACK prompts for user 
information. All three of these states can transition between each other. At the completion of a task (or task 
sequence) the system state transitions to END which transitions back to TELEOP-FREE, a user-controlled state. 
A finite set of task states (𝑠 ∈ 𝑆) are within a task sequence 𝑇!  which is defined as 𝑇!: 𝑠#

$!→ 𝑠%…
$"→	𝑠&, such that 𝑠# 

is an initial state. Task states can generalize across tasks (e.g., start, to_grasp, has_object), or be task specific 
(e.g., start_drink, finish_drink). Every task state within a task sequence is assigned a system state type. Our goal 
is to continuously refine the states to discover commonalities which further reduce code complexity.  
Actions (𝑎 ∈ 𝐴) are defined in an action library that are re-used modularly. The most primitive actions have four 
commands: 1) opening the gripper fully; 2) closing the gripper for some amount; 3) moving the ARM to a goal 
configuration that is collision free (via motion planning), and 4) moving the ARM to a goal configuration where 
there is no collision checking (direct cartesian movement). These four primitive actions create more general object 
interactions that combine to form task sequences. Figure 2 shows a legend with three possible 𝑇!		state types and 
four primitive actions that describe state-action sequences. 
For example, dispensing popcorn requires closing the 
gripper, motion planning to a collision free offset above the 
dispensing handle, and executing a cartesian action that 
moves the gripper down to dispense the popcorn kernels. 
This sequence can be labelled as a PUSH (Figure 4). 
For state transitions, we construct a finite state machine 
(FSM) with the state pattern software design. An abstract 
context task class defines environment obstacles, associated 
object interaction positions, and stores a reference to the starting task state. The task class uses polymorphism to 
transition between states. An abstract state class encapsulates state-specific actions and defines the next state 
for each of the current state’s possible actions.  
Object properties 
Before the system starts, a designer sets each task sequence’s associated environment and interaction objects in 
a configuration file. Environment object properties define obstacles in the world that are sent to the motion 
planner. Interaction object properties define positions and grasps which are parsed and commanded when 
performing actions. For example, picking up a cup is configured in a PICK sequence that defines a radius and 
height for the cup obstacle, and an offset position and grasp type for grasping the cup. Each object can be tied to 
a fiducial marker tag (QR-like code) placed in the environment that when identified by the ARM’s camera can be 
selected by the user.  
REPRESENTATIVE TASKS 

Figure 1: Architecture 

Figure 2: Legend for task sequences 
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Our first software iteration assigns user control to gross actions that move the gripper towards interaction objects 
(during TELEOP-FREE), and actions that require an unknown time duration (e.g., drinking water, filling water). 
Robot control is assigned to the finer manipulation actions of the task (e.g., aligning gripper orientation, grasping). 
The system was implemented for two main tasks: a drinking task and a popcorn making task. Generalizations 
emerge through these two tasks across task actions, states, and task sequences which reduce software code. 
For example, both tasks contain pick sequences which share the same state and action state machine.  
In the drinking task, Figure 3, first a cabinet is opened (open gripper, move to cabinet, align with handle, grasp, 
pull back in a circle arc), and then a cup is retrieved (open gripper, reach to cup, grasp cup, retract) from the 
cabinet. The cup is then filled and brought to a drink position before being returned to the table. Each phase has 
an internal state machine with multiple states and actions which can be assigned to the user or robot. For 
example, filling and drinking are two user-assigned actions (Figure 3 sequence 3), since the completion time of 
these action can vary based on user preference.  
The popcorn making task 
increases the complexity. 
This task contains similar 
components as the drinking 
task but now interaction 
objects can be 
used in more 
than one 
sequence and 
different 
actions can be 
performed with 
a single object. 
This is where 
the sequential 
order of the 
task is now 
tracked by the 
system for 
knowing the 
next action 
and prompting 
action choices 
to the user for robot control. Note that if the user is in control of the current action, the sequential order is 
unnecessary, since the user is free to manipulate the interaction object however they wish. Figure 4 shows the full 
popcorn task. The complexity of the task was further eased using adaptations to the popcorn jug and a voice-
controlled smart microwave. First popcorn kernels are dispensed into a cup, retrieved, and poured into an 
adapted jug. After the cup is placed on the table, a lid with perforated wholes is placed on the jug to prevent 

Figure 4: Popcorn Task 

Figure 3: Drinking Task 
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popcorn from escaping. Then the microwave is opened, and jug is placed into the microwave. The last sequence 
(Figure 4 sequence 6) also shows an example of the user feedback state. The move jug sequence can be 
generalized by asking the user information, through the touchscreen, to know if the jug should be placed in the 
microwave or removed from the microwave.  
DISCUSSION   
Our initial testing will compare manually operating the ARM joystick in the drinking and popcorn tasks with 
switching the control authority assignment of the user and robot autonomous software. This will evaluate if 
assigning a fixed control authority, where the user controls larger gross arm movements and the robot software 
controls finer manipulation movements, is preferred.  
As we refine our code to support more tasks, commonalities will further categorize states and actions at an 
appropriate resolution. We hope to collaborate with occupational therapists for matching their task analysis 
techniques with our hierarchical assumptions. These collaborations will better inform the design increasing the 
usability and effectiveness of assistive robotic systems. Another continuation is to gather information as the user 
is controlling the system for more seamless control authority transitions. For example, if we could classify that the 
user is struggling, we could have the robotic system more seamlessly offer help and transition. Additionally, 
understanding the user’s progression within an action could allow the robot software to anticipate next actions for 
better supporting the user.  
For future testing, the ARM will be mounted to the participant’s wheelchair. As the user controls the ARM, they 
often shift their weight by adjusting their field of view, or for personal comfort. These movements affect the robotic 
arm base’s reference frame, creating shifts in both the z-axis (like a bounce) and translationally necessitating 
sensing of the ARM’s base position. This tracking is also necessary for tasks that include the motion of the EPW. 
For example, opening a refrigerator includes the strategy of moving the power wheelchair backwards while having 
the arm gripped to the door handle. This example also expands the number of control authority agents. The EPW 
is another user-controlled input (already supported by the system if assigned to user control), or it could be 
modeled as an additional control authority agent (if the wheelchair software independently controls the system).  
CONCLUSION 
This paper presents a hierarchical software architecture for facilitating assignment of control authority within multi-
action manipulation tasks. By allowing system designers to easily change which parts of the task are controlled, 
we can run studies that explore participant preferences and perceptions of autonomous robot software assisted 
platforms. This is important for driving user-centered design and understanding where assistive robotic 
technologies can adapt within the user’s routine.  
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