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INTRODUCTION 

Many individuals with severe motor 
disabilities lack sufficient motor control to use 
speech, gestures, and movements to 
communicate and control external devices. 
Brain-computer interfaces (BCI) are controlled 
through brain activity alone, and may provide 
such individuals with an alternative means of 
communication and control. Near-infrared 
spectroscopy (NIRS) is an optical imaging 
technology that has recently been investigated 
as a potential measurement modality for non-
invasive BCIs. 

Generally, a user controls a BCI output 
by consciously eliciting distinct, repeatable 
patterns of activity in a particular region of the 
brain. This is usually done through performing 
different mental tasks. These characteristic 
patterns of activity are detected and 
interpreted by the system, which then produces 
the appropriate command signals to control a 
connected external device (e.g. computer 
mouse) in the way the user intended. 
 The ability to accurately detect and 
classify the patterns of activation associated 
with different mental tasks (and different BCI 
commands) is essential to BCI development. 
The aim of the present study was to investigate 
the feasibility of differentiating between two 
different cognitive tasks in the prefrontal cortex 
(PFC), namely mental arithmetic (MA) and 
music imagery (MI), using NIRS 
measurements. If these two activities can be 
successfully classified with acceptable accuracy, 
it could lead to the development of a 2-state 
synchronized NIRS-BCI. 

METHODS 

Participants 

Ten able-bodied adults (four male, mean 
age = 26.2 +/- 6.9 years) were recruited from 

the staff and students at Holland Bloorview Kids 
Rehabilitation Hospital (Toronto, Canada). 
Individuals were excluded from participation if 
they had any condition that could affect either 
the measurements or their ability to follow the 
experimental protocol. Additionally, participants 
had to enjoy music and feel that performing 
imagery of self-selected musical pieces could 
elicit a positive emotional response. Ethical 
approval was obtained from Holland Bloorview 
Kids Rehabilitation Hospital and the University 
of Toronto. Participants provided signed 
consent. 

Instrumentation 

Signals were acquired using a 
multichannel frequency-domain NIRS 
instrument (Imagent Functional Brain Imaging 
System from ISS Inc., Champaign, IL). Ten NIR 
sources and three photomultiplier tube 
detectors were clipped into a flexible headband 
and secured against the participant’s forehead. 
The ten sources were grouped into five pairs, 
each containing one 690 nm and one 830 nm 
source. Nine locations within a 27cm2 
trapezoidal area were probed as shown in 
Figure 1. The headband was placed on the 
forehead such that the bottom row of optodes 
sat just above the eyebrows, and the center 
row of optodes was in line with the participant’s 
nose. Data was sampled at 31.25 Hz. 

Figure 1: Source–detector configuration. Each 
solid circle represents a detector, while each open 
circle represents a source-pair consisting of one 
690 nm and one 830 nm source fiber. 



Experimental Protocol 

NIRS signals were collected from each 
participant as they performed trials of MA and 
MI. For the MI task, participants were asked to 
pre-select several songs that they felt would 
elicit a strong positive (i.e., happy) emotional 
response in them. When performing MI, they 
were instructed to make an effort to feel the 
emotion elicited by the piece, rather than just 
passively reciting the lyrics or humming the 
tune. For the MA task, participants performed a 
sequence of simple mathematical calculations. 
These calculations always began with the 
subtraction of a small number (between 4 and 
13) from a three-digit number, and continued 
throughout the task interval with successive 
subtractions of the small number from the 
result of the previous subtraction (e.g. 967−13 
= 954, 954−13 = 941, 941 − 13 = 928, etc). 
The initial calculation to begin the sequence 
was always given. 

A single trial consisted of a 15–25 s rest 
interval, followed by a 20 s task interval, 
followed by a final 10 s rest interval. The 
duration of the initial rest interval was varied to 
reduce the participant’s ability to anticipate the 
start of the task interval. During the resting 
state, subjects were instructed to relax, and to 
mentally recite the alphabet slowly. This slight 
load was meant to stabilize the prefrontal 
activity during the resting intervals. To provide 
cues for the participant to transition between 
the rest and task states, the experiment was 
designed as a picture-matching task. Two 
pictures of common geometric shapes were 
presented on the screen. Participants were told 
to remain in a resting state when the pictures 
did not match and to perform the indicated task 
when the pictures matched (which occurred 
during the rest and task intervals, 
respectively). During the task interval, the task 
to be performed was indicated in a small box 
below the pictures. Figure 2 shows 
representative display screens for each interval 
of a MA trial. 

Fifty-one trials of each task were 
recorded per participant over three 
experimental sessions (one third of trials for 
each task were recorded per session). Within a 
given session, participants performed either all 
the math trials followed by the music trials (odd 
numbered participants), or vice versa (even 

numbered participants). 
 

DATA ANALYSIS 

Pre-processing 

Prior to classification, the raw ac light 
intensity signals were low-pass filtered to 
mitigate physiological noise due, primarily, to 
respiration (0.2–0.3 Hz) [1], cardiac activity 
(0.8–1.2 Hz) and the Mayer wave 
(approximately 0.1 Hz) [2]. We employed a 
wavelet filter that performed a ten-level 
decomposition using a Daubechies-12 wavelet. 
Given the knowledge that hemodynamic 
activity is predominantly low-frequency (peak 
response has been observed approximately 5–8 
s post-stimulus [3]), the filtered signals were 
reconstructions retaining just the 
approximation signal and the last four detail 
signals.  

For each of the 18 channels under 
consideration, the filtered ac light intensity in 
the period 2–20 s after the start of the task 
interval was extracted. Each 18 s segment was 
then normalized against its own mean intensity 
and scaled.  

Classification 

A hidden Markov model is a statistical 
model examining a Markov process in which the 
states are not directly observable, but rather 
are dependent on the observable outputs. 
Information about the state sequence can be 
gleaned from the output through the 
observation probability distribution associated 
with each state. Two different problems can be 
solved given a particular model: (1) 
determining the most likely state sequence 
from a given observation sequence, and (2) 
evaluating the probability of a given 
observation sequence [4]. For this MA vs. MI 
classification application, we were interested in 
the latter problem. In brief, we created a model 

 
Figure 2: Example display screens and timing for 
mental arithmetic trial. 



for each of the two tasks, and then classified 
trials as MA or MI based on which model was 
more likely to have generated the trial data.  

An HMM, representing an observation 
vector , is completely characterized by the 
following parameters: 
1. The number of discrete states, Q. 
2. A state transition probability matrix, A = 

{aij}, of transition probabilities between 
states i and j. 

3. The initial state distribution vector, Π. 
4. The vector of observation probability 

distributions in each state j, denoted as 
b={bj(μ)} where j=1,…,Q. Gaussian 
mixture models (GMM), given by a 
weighted sum of M component Gaussian 
densities, are often used as observation 
probability distributions. 

 
In this case, the observation vectors 

were 18-dimensional, comprising the values of 
each of the 18 pre-processed ac light intensity 
signals at a single sampling point during the 
task interval. With a sampling rate of 31.25 Hz 
and interval duration of 18s, there was a total 
of 562 observation vectors per trial. 

Classification accuracy was evaluated for 
each participant using five-fold cross-
validation. For each fold, an HMM was modeled 
for each of the two tasks using the complete 
set of observation vectors from the training 
trials for that task, denoted as Utrain

task  (where 
task denotes either MA or MI). During training, 
the parameters A, b and Π were optimized for 
each HMM using the expectation-maximization 
algorithm [4, 5]. The parameters Π and A were 
initialized such that all states and all 
transitions between states, respectively, were 
equally probable. For the parameter b, the k-
means clustering algorithm [5] was used to 
obtain the initialization values for the weights, 
means and covariances (full) of the M Gaussian 
components in the GMM. The parameters Q 
and M are not optimized through model 
training, but rather need to be determined a 
priori. In this study, different combinations of 
these parameters were explored so that 
subject-specific classifiers could be developed. 
All combinations of Q and M that allowed for a 
training ratio (ratio of number of training 
points to number of estimated parameters) 
greater than 10 were considered. These 

combinations were as follows: Q=2, M={1-6}; 
Q=3, M={1-4}; Q=4, M={1-3}, and Q=5, 
M={1}. 

During the testing phase, each trial from 
the test set was tested against each of the two 
HMMs (i.e., HMMMA and HMMMI). For each test 
trial, i, the forward-backward algorithm 
described in [4] was used to determine the 
log-likelihood (LL) of each model having 
generated the test data, denoted by the 
observation matrix Utest,i

task . The HMM yielding 
the highest log-likelihood value represented 
the model from which the observed data most 
likely arose, and thus the trial was classified as 
either MA or MI. Figures 3(a) and (b) depict 
the model training and classification schemes, 
respectively. 

RESULTS 

The results for the best-performing 
model parameters (Q and M) for each 
participant are listed in Table 1. These 
parameters are reported, along with the 
average accuracy and standard deviation over 
the five-fold cross-validation for each 
participant. Across participants, the average 
accuracy achieved was 77.2%. The 
classification rates for all individuals were 
significantly greater than chance, as 
determined by t-tests (p < 0.0323). 

DISCUSSION 

We were able to distinguish between mental 
arithmetic and music imagery with an accuracy 

Figure 3: a) Model training and b) classification 
procedure.  



exceeding chance, thus clearly the tasks must 
elicit different spatial and/or temporal 
activation patterns within the PFC (at least for 
these individuals) that were captured by the 
HMMs. This hypothesis is substantiated by the 
plot of the hemodynamic response over the 
task interval at each of the nine interrogation 
locations, which can be found in [6]. 

We anticipate that the described 
algorithm will be suitable for use in a two-
choice NIRS-BCI operating under a 
synchronized control paradigm [7]. There would 
be system-defined control intervals during 
which the user would be asked to perform 
either MI or MA to indicate one of two choices 
(e.g., yes or no). The system would evaluate 
the user’s brain activity only during these 
defined control periods, with the HMM classifier 
being used to determine which task was 
performed, and thus how the user responded 
(i.e. yes or no) during a given control period.  
 The goal would be to collect, for each 
task, a sample of data with which to initially 
tune the HMM parameters offline. The user 
would then begin learning to operate the BCI 
online. However, due to inter-session variability 
in user response patterns and in sensor 
placement, it may prove ineffective to have a 
single, a priori, classifier training session. The 
classifiers may have to be re-trained prior to 
each use using newly-collected data (either 
exclusively, or as a supplement to the 
previously-collected data). Of course, for 

reasons of practicality the amount of data 
collected at each session will have to be limited. 
Further work will involve adapting the 
developed algorithm for online use, and 
designing an effective classifier/user training 
protocol. 

For a more thorough discussion of the 
results, the reader is directed to [6]. 

CONCLUSIONS 

In this study, we attempted to classify 
activity in the PFC resulting from two different 
cognitive tasks, specifically mental arithmetic 
and music imagery. The encouraging 
classification results obtained using pre-
processed ac light intensity signals and subject-
specific maximum-likelihood HMM classifiers 
warrant further investigation of a two-choice 
NIRS-BCI paradigm based on the classification 
of different prefrontal cognitive tasks. 
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Table 1: Per-participant classification accuracies 
and optimized HMM parameters 

Model 
Parameters Subject 

# 
Q M 

Classification 
Accuracy 

(mean +/- std) 
p-value 

1 2 4 71.7 +/- 6.6 0.0018 

2 3 3 86.4 +/- 7.9 0.0005 

3 4 1 80.2 +/- 6.1 0.0004 

4 2 4 76.5 +/- 4.2 0.0001 

5 4 1 82.1 +/- 9.2 0.0015 

6 2 1 80.3 +/- 4.0 0.0001 

7 3 2 80.4 +/- 7.9 0.001 

8 4 3 77.0 +/- 5.7 0.0004 

9 2 2 77.3 +/- 6.2 0.0006 

10 2 5 60.5 +/- 7.3 0.0323 

Average:     77.2 +/- 7.0 


