

MAKING CUSTOM KEYBOARD AND MOUSE SETTINGS PORTABLE

Heidi Koester, Jennifer Mankowski
Koester Performance Research, Ann Arbor MI

INTRODUCTION

In previous work, we developed two software
wizards used to customize keyboard and pointing device
settings to optimize user productivity and comfort [1].
Recently we added a new feature to both of the wizards
which allows packages of Windows registry settings to be
activated on other computers. This paper describes the
new portable settings feature, reasons why it is desirable,
and the manner we chose to support it.

BACKGROUND

The Windows operating system supports a variety of
registry settings that control keyboard and pointing device
behavior. Determining the optimal values for these
registry settings can be somewhat complex and confusing
for the typical computer user. Our software wizards
simplify the process of determining the optimal setting
values for an individual and activating those settings.

Keyboard Wizard presents a text entry task in which
the user is asked to transcribe a short sentence. At
completion of the task, the wizard analyzes the user’s text
entry data and makes recommendations for Sticky Keys,
keyboard repeat delay and repeat rate. The user can
practice with the recommended settings prior to selecting
which settings they would like to keep using. At any point
throughout the wizard, the user can choose to return to
their original settings and exit the application.

Pointing Wizard consists of two parts which walk the
user through the process of optimizing basic target
selection settings and double-click settings. Each part
follows a similar flow to that described for Keyboard
Wizard. Part One makes recommendations for object size,
pointer speed, and Enhance Pointer Precision. Part Two
makes recommendations for double-click time, double-
click distance, and whether double-clicks should be used
at all.

The first version of the wizards had a significant
shortfall in that there was no provision for storing the
settings packages in a form that could be used to easily
activate the settings on any Windows machine. This
meant that a user would need to run through the wizard on
each machine they used, or manually transfer the settings
via the Control Panel. Either option is inconvenient and
time-consuming. It also meant that for machines which
are shared among multiple users without individual
accounts, it would be difficult to switch the settings back
to the originals and then re-activate the custom settings
when desired.

To overcome these limitations, we wanted to allow
users to easily activate the wizard’s final settings on any
computer. We determined that restoring Windows default
settings could be a desirable function as well, since it
would allow for a ‘reset’ if there were multiple users of a
machine or if the user had a change of heart regarding
which settings they wanted to use. Providing the settings
in a portable, easily activated form would allow clients to
run through the wizards in the clinic or school and then
take the settings home or to public computer labs for use
on other machines.

REQUIREMENTS

Our primary goal was to provide the ability for users
to activate settings packages created by the wizards on
other machines with minimal changes to the wizard user
interface. In that spirit, we considered the new feature as
two distinct parts consisting of the wizard’s responsibility
for interfacing with the user and creating the packages
and the resulting packages themselves. The following
requirements emerged.

Wizard

W1. The user will be presented with the option of saving
the active settings package on the wizard Finish screen.
This will eliminate confusion as to what setting values
will be included in the package.

W2. The wizard will allow the user to specify a filename
and location for the package.

W3. The wizard will write a settings package file with the
currently active settings to a file.

W4. The wizard will write an additional settings package
to the same location. This package will contain the
Windows default settings applicable to the wizard,
keyboard settings for Keyboard Wizard and pointing
related settings for Pointing Wizard. This default settings
file will allow the user to undo changes made by
activating the wizard settings package.

Settings Packages

S1. Each portable settings package will consist of a single
file. This supports portability in the simplest sense
because the user will only need to move or copy a single
file.

S2. The portable settings package should be easy to use.
The user should understand what to do with the file
intuitively.

S3. Each settings package file will be small, less than 100
kB, to make file transfer trivial.

S4. Execution of the file will write the desired setting
values to the Windows registry. Ideally it will also
activate the settings without requiring any additional
actions by the user.

S5. When executed, the file will read in certain registry
values such as MenuFont and ShellState and perform
operations to modify specific bytes. This is necessary
because the entire fields are complex and control much
more than what we intend to change. If the read
operations are unsuccessful, nothing will be written to
those values.

S6. The packages will support all settings recommended
by Keyboard Wizard and Pointing Wizard.

DESIGN

Wizard

The requirements for the additions to the wizard were
relatively straight forward: adding a new button and a file
chooser in addition to creating the settings package files.
The main challenge was explaining the feature clearly and

concisely so that the user understands how to use the
package files. This is a requirement of the settings
packages themselves, but because they are stand-alone
files, it may be difficult to embed information on how to
use the file. It makes sense to take advantage of the
opportunity that we have within the wizard to explain the
use of the files by displaying a dialog box after the files
have been written.

Settings Packages

The primary challenge here was determining what
type of file to use for the portable settings packages.
Based on the comparison of available registry scripting
methods [2], the file types that we considered were REG,
INF, batch files, and VBScript.

Registry files (.REG extension) are system files that
update the Windows registry when run. This is a standard
method provided by Microsoft for modifying the registry.
The user imports setting values by double-clicking on the
file or right-clicking and selecting ‘Run’. Regarding
requirement S2, even though REG files are an accepted
way to change the registry, it is unclear how many of our
users would recognize the file type and understand how to
use it. After the file has been executed, the user must log
off and log back on or restart the computer to activate the
new settings. This presents a significant usability issue
because there is no way to inform the user that further
action is required to activate the settings. Additionally
REG files do not satisfy requirement S5 because they
cannot query values.

Information files (.INF extension) are installer files
typically used to install applications or hardware. To write
the setting values, the user would right-click the file and
select ‘Install’. INF files could be a bit misleading in this
context since nothing is really being installed. They
present the same usability issues as REG files in the sense
that use of the file is not intuitive and there is no way to
inform the user of the need to restart the machine to
activate the new settings.

Batch files (.bat extension) are used to execute
commands with the Windows Command Prompt. Using a
batch file, we can run REG.EXE (a console registry tool
provided with Windows) to read from and write to the
registry. Loops and various forms of variable
manipulation are also supported and information can be
written to the command window informing the user of the

need to log off and log back on or restart the machine to
activate the new registry settings.

None of the file types that we examined completely
satisfied requirement S4 because they all require further
action to activate the newly written registry settings. This
seems to be unavoidable when using a single-file solution
since activation of the settings that are being changed is
problematic. We have found that standard methods of
notifying all applications to update their
SystemParametersInfo are not effective. We accept this
limitation, but it does create an additional requirement to
inform the user to log off and log back on or to restart the
computer to activate the new settings.

We decided to use batch files for our portable settings
package because they provide the majority of the
functionality specified in our requirements, with the
possible exception of intuitive use (S2). It is unlikely that
our users will recognize the batch file type and
immediately know how to use it. However, directions can
be provided both in the wizard and in the wizard help
system. Additionally, when a person does not know what
to do with a file, typically they double-click on it or try to
run it in some fashion, which is exactly the correct action
for running batch files.

VBScript is an option that was explored after we had
already shown the feasibility of the batch file approach.
VBScript would provide a GUI to our users but it would
still not activate the settings without requiring a restart.
Because the batch file approach is simpler and VBScript
would not provide increased functionality, we decided to
use batch files.

IMPLEMENTATION

Several additions were made to the wizard interface.
These include a ‘Save Batch File’ button on the Finish
screen offering the user the option to store the active
settings to a file, a file chooser dialog displayed when the
button is activated, and an instructional dialog box
displayed after the file has been created.

Figure 1 shows the instructional dialog box displayed
from Keyboard Wizard when a settings package file has
been successfully saved.

Figure 1. Instructional dialog box displayed by Keyboard
Wizard after settings have been saved to a batch file.

Figure 2 shows a wizard-created batch file as seen from
Windows Explorer.

Figure 2. Batch file as seen from Windows Explorer.

When the user double-clicks on the batch file or
right-clicks and selects ‘Run’, a command prompt
window opens and the commands from the batch file
scroll through that window as they are executed. Figure 3
shows the command prompt window when execution of
the batch file has completed.

Figure 3. Window at completion of batch file execution.

CONCLUSION

We have successfully added the portable settings
feature to Keyboard Wizard 1.2 and Pointing Wizard 1.2.
Wizard requirements W1 through W4 and settings
package requirements S1, S3, S5, and S6 have been
satisfied completely. With the instructions added to the
wizard interface, requirement S2 has been met. We
believe that users will understand or at least be able to
guess how to run the batch file. Requirement S4 has been
met to the greatest extent possible while still supporting a
single-file solution. Additional instructions provided from
the batch file clarify the need for a restart to activate the
new settings. Ideally we will incorporate usability testing
specific to this feature in some of our future studies to get
user feedback on the design. Batch file behavior has been
confirmed on Windows XP and Windows 7 from both
administrator and standard user accounts.

This feature gives wizard users the ability to store
packages of registry settings in batch files. This batch file
provides portability so that individuals can activate
settings to customize keyboard or pointing device
behavior on other machines without running either
Keyboard Wizard or Pointing Wizard.

ACKNOWLEDGEMENTS

This work was supported by the Paralyzed Veterans
of America Research Foundation.

REFERENCES

 [1] Koester, H.H., Mankowski, J., LoPresti, E.F.,
Ashlock, G., Simpson, R. “Software Wizards for
Keyboard and Mouse Settings: Usability for End Users”,
in Proceedings of RESNA 2011 Conference, Toronto,
Canada: RESNA Press, 2011.

[2] Honeycutt, J. (2005). Microsoft Windows Registry
Guide, Second Edition. Redmond, Washington: Microsoft
Press.

